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Abstract

Sketching is a universal and intuitive tool for humans to render and inter-
pret the visual world and is extensively used by designers in the product
design and digital fabrication process. Since human viewers can easily en-
vision the missing 3D information from a sparse, abstract, and imprecise
sketch, they tend to use sketches to represent complex shapes based on
notable advantages such as flexibility, concision, and efficiency. However,
inferring the desired content from an input sketch or multi-view sketches is
still highly challenging for machines due to the ill-posed nature. With the
successful developments of deep learning techniques, such as implicit repre-
sentation, image-to-image translation, and metric learning, we have more
opportunities and general tools to solve challenging problems in sketch-
based shape and structure analysis tasks. This dissertation explores the
topic of sketch-based shape and structure analysis with the above advanced
frameworks in three aspects: imperfect inputs, interaction with external
physical factors, and multi-view inputs.

To enable people to perform the sketch-based shape and structural analy-
sis in the design and fabrication process, we propose three deep learning-
based techniques to assist users in three tasks, namely, beautifying imper-
fect freehand sketches, simulating shape structural stress for a single sketch
under a user-specified force, and inferring correspondence from multi-view
sketches.

Although sketches are widely studied and used in various sketch-based ap-
plications, existing algorithms are still struggling to directly make use of
these freely drawn sketches that are usually drawn in an imprecise and
abstract format, in particular, sketches created for depicting man-made ob-
jects with diverse geometry and non-trivial topology. We present a novel
freehand sketch beautification method, which takes as input a freely drawn
sketch of a man-made object and automatically beautifies it both geomet-
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rically and structurally. Beautifying a sketch is challenging because of its
highly abstract and heavily diverse drawing manner. Existing methods are
usually confined to the distribution of their limited training samples and
thus cannot beautify freely drawn sketches with rich variations. To address
this challenge, we adopt a divide-and-combine strategy. Specifically, we
first parse an input sketch into semantic components, beautify individual
components by a learned part beautification module based on part-level im-
plicit manifolds, and then reassemble the beautified components through
a structure beautification module. With this strategy, our beautification
method can go beyond the training samples and handle novel freehand
sketches by learning both the possible part geometries and the plausible
combinations of individual components. We demonstrate the effectiveness
of our sketch beautification system with extensive experiments and a per-
ceptive study.

In the process of product design and digital fabrication, structural analysis
of a designed prototype is a fundamental and essential step. However, such
a step is usually invisible and agnostic to designers in the early sketching
phase. This limits users’ ability to contemplate a shape’s physical proper-
ties and structural soundness. To bridge this gap, we present Sketch2Stress
that allows users to perform structural analysis of desired objects at the
sketching stage. Sketch2Stress takes as input a sketch and a point map to
specify the location of a user-assigned external force. It automatically pre-
dicts a normal map and a corresponding structural stress map distributed
over the user-sketched underlying object. In this way, Sketch2Stress em-
powers designers to easily examine the stress sustained everywhere and
identify potential problematic regions over their sketched object. Further-
more, combined with the predicted normal map, users are able to conduct
a region-wise structural analysis efficiently by aggregating the stress effects
of multiple forces in the same direction. We demonstrate the effectiveness
and practicality of Sketch2Stress system with extensive experiments and
user studies.

The above two works focus on the analysis and processing of single-view
sketches. However, interpreting missing 3D information from the single-
view sketch only is still challenging for existing computer algorithms, espe-
cially the sketch-based shape reconstruction approaches. Therefore, multi-
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view inputs are often needed and used in the aforementioned algorithms
to reduce the inherent ambiguity in single-view sketches and recover the
underlying 3D geometry faithfully. The third technique aims at automat-
ically computing the semantic shape correspondence among multi-view
freehand sketches created for the same objects. Correspondence match-
ing is a fundamental but still an open problem in the research community.
This problem is more challenging for multi-view sketches since the visual
features of corresponding points can be very sparse and vary significantly
across different views. To solve this problem, we present SketchDesc to
learn a novel local sketch descriptor from data. We further contribute a
training dataset by generating the pixel-level correspondence for the multi-
view line drawings synthesized from 3D shapes. To handle the sparsity and
ambiguity of sketches, we design a novel multi-branch neural network that
integrates a patch-based representation and a multi-scale strategy to learn
the pixel-level correspondence among multi-view sketches. Through ex-
tensive experiments on hand-drawn sketches and multi-view line drawings
rendered from multiple 3D shape datasets, we demonstrate the effective-
ness of SketchDesc.
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Introduction
1

S ketching is an important tool in product design and digital fabrication.
Putting sketching assistance into consideration, e.g., quickly setting up

an indoor scene with a sketched office-style long table alongside two sides
chairs in a meeting room, can greatly facilitate the expression and improve
the believability of the creation of designers by specifying the general envi-
ronment and curving the essential objects in a depicted scenario. However,
the further step, shape and structure analysis of the sketched object under
the external environmental forces is still missing in the research commu-
nity and remains challenging in creating structure-sound sketch prototypes
and refining the original sketch design iteratively to direct the subsequent
fabrication steps in the real production process.

Despite the abstract nature of sketches, human viewers can implicitly beau-
tify sketches and easily envision their underlying 3D objects in the real
world, whether from single or multiple views. On the one hand, humans
have an innate perception of similarity and discrepancy in the shape and
structure of sketched objects, e.g., humans can easily recognize geome-
try and structure discrepancies within an arrangement of sketched objects,
like, distinguishing swivel chairs from four-leg chairs. This inspires us to
explore machine learning approaches to understand the perceptual shape
and structure similarity in human sketches. On the other hand, design-
ers extensively use sketching to curve the shape and structure of desired
product prototypes. However, they have no way of analyzing the struc-
tural soundness of their created sketch prototypes immediately, even for
experienced designers, not to mention refining their original design at the
sketching stage. This is because structural analysis of designed prototypes
is the latter fundamental step after the sketching step in the conventional
product design and digital fabrication process [52], as shown in Figure 1.1,
and aims to verify whether designed products can withstand realistic forces
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Designing Digitalization Fabrication Structual Analysis

Iterate until being qualified

Fig. 1.1. Illustration of the general steps in the product design and digital fab-
rication process. Designers first utilize sketches to express their ideas
and creation in the designing step. After a digital 3D model is cre-
ated in the digitalization step, the fabrication step further fabricates
it into the physical product. The structural analysis step then verifies
whether this final product can pass the compression testing and further
refines the product structure in the previous digitalization and fabrica-
tion steps iteratively. The separation between the designing step and
its afterwards steps makes it challenging for designers to analyze the
structure-soundness of their designed product during sketching.

in the wild world or under specified scenarios, e.g., the soundness of chair
legs to undertake the weight of an extremely heavy person.

As the physical stress undertaken by designed prototypes needs to be math-
ematically/physically precise considering the inputs of structure, functions,
and external forces, this step is commonly operated on 3D shapes [121,
113, 155, 58, 126]. Since 3D shapes are the most common and infor-
mative representations encoding highly detailed geometric features and
miscellaneous shape structures, they are frequently used to simulate com-
plex motions and display lifelike interactions with physical factors. But
adapting the structural analysis task from informative 3D objects to sparse
2D sketches is nontrivial due to the ill-posed nature of the 2D sketch and
the high-dimension and complex representation of the interactive external
forces (locations, magnitudes, directions). This problem is more challeng-
ing when input sketches are rough and imprecise. Inspired by advanced
techniques, such as implicit representation [88, 76], image-to-image trans-
lation [49, 132], and metric learning [122, 74, 123], we provide our
solutions specifically designed for the aforementioned tricky problems in
sketch-based shape and structure analysis, such as beautifying imperfect
freehand sketches, interactively analyzing the shape structure of sketches

2 Chapter 1 Introduction



under specified external force configurations, and inferring semantic shape
correspondence from multi-view sketches.

We present three deep learning techniques to assist non-professional users
in sketch-based shape and structure analysis in different aspects: A sketch
beautification system helps interactively beautify an input freely drawn
sketch of a man-made object both geometrically and structurally; Sketch2Stress
guides users in analyzing the structural weakness of their sketched object
under external forces simulating physical factors and further refining their
original drawings iteratively to more structurally-sound sketch prototypes;
SketchDesc predicts the semantic shape correspondence for different kinds
of multi-view sketches;

In our sketch beautification system (Chapter 3), we first decompose an in-
put sketch to part sketches and introduce a novel implicit representation for
part sketches, allowing for smooth interpolation between two samples with
large geometry discrepancies. We then adopt a retrieval-and-interpolation
way to beautify the geometry of part sketches and design a novel spatial
transformation network to further refine the global structure of the entire
input sketch. In Sketch2Stress (Chapter 4), we first decouple the high-
dimension and complex forces to the constant force magnitude and direc-
tion based on the estimation of a 2.5D normal map. Then we utilize an
effective data-driven framework to approximate the mathematically/phys-
ically precise stress by constructing a novel large-scale sketch-force-stress
dataset and proposing a new two-branch (for force location and direction)
generation pipeline. Finally, we provide a new sketch-based interface for
novice users to support sketch-based weakness analysis and structural re-
finement (for adjusting the original design). In SketchDesc (Chapter 5),
we transform the correspondence learning problem to the metric learning
problem, where we utilize the triplet loss [99] to shrink the distance be-
tween feature descriptors of the corresponding points among multi-view
sketches and expand the distance between ones that are not correspond-
ing. In this way, we present a pixel-wise sketch descriptor that can easily
find the corresponding points among the multi-view sketch inputs.

In the design and fabrication process, our proposed systems focus on sev-
eral specified types of sketches. Figure 1.2 and Table 1.1 clarify and display
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Freehand Man-made Object
Sketches Product SketchSynthetic Sketches 

Fig. 1.2. Different types of sketches utilized by our proposed systems in the design
and fabrication process.

System Roles Usage Scenario Input Sketch

Sketch Beautification
Beautify User’s Freehand Man

Single-view
Freehand Man-made Object

-made Object sketches Sketch

Sketch2Stress Analyze User’s Sketched Struc
Single-view

Freehand/Product
-tures under Specified Forces Sketch

SketchDesc Extend Single-view Applications
Multi-view

Freehand/Product/Synthetic
to Multi-view Scenario Sketch

Tab. 1.1. Roles of our proposed systems in the sketch-based shape and structural
analysis in design and fabrication.

the types of input sketches used by our different algorithms, namely, free-
hand man-made object sketches, synthetic sketches, and product sketches,
respectively. Typically, freehand sketches are created by novice users with
non-professional drawing skills and design experience. The specified free-
hand man-made object sketches are also created by novice users but are
further utilized to depict 3D man-made objects that can be semantically
segmented partly. Synthetic sketches, on the other hand, are 2D edge maps
directly rendered from existing 3D shapes using non-photorealistic render-
ing (NPR) algorithms such as canny edge detection [11]. As for product
sketches [38], they are used by professional designers to capture the es-
sential geometry and structure of real products in the product design and
digital fabrication process.

We use Table 1.1 and Figure 1.3 to illustrate the roles and connections re-
lated to the topic of sketch-based shape and structure analysis and demon-
strate their contributions to the current design and fabrication process.
As shown in Table 1.1, our sketch beautification system aims to assist
users in beautifying their freely sketched man-made objects both geometri-
cally and structurally during the design and fabrication process. And our
Sketch2Stress enable users to perform structural analysis on their created
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Sketch Beautification

Beautification Direction

Multi-view Correspondence

Beautified Geometric Features Transfer

Sketch Beautification

Beautification Direction

Sketch-based Structural Analysis

(a)

(b)

(c)

Sketch-based Structural Analysis

Sketch-based Structural Analysis Sketch-based Structural Analysis

Multi-view Correspondence

Fig. 1.3. Illustration of connections in our proposed three systems: the relation-
ship between sketch beautification system and Sketch2stress (a), the ben-
efits of using our SketchDesc to Sketch2Stress (b) and sketch beautifica-
tion system (c), respectively.

sketch structures under external environmental forces. Both the sketch
beautification system and Sketch2Stress are used in the single-view scenar-
ios. However, in the design process, multi-view sketches are more useful
and representative than single-view sketches. Therefore, our SketchDesc
computes the semantic correspondence among multi-view sketches and fur-
ther extends the single-view applications to the multi-view scenario (see
Figure 1.3 (b) and (c)). Figure 1.3 (a) shows the structural stress anal-
ysis results of a user’s freehand sketch (the left part) and its beautified
version (the right part) using our sketch beautification system (the upper
middle). It is evident that our sketch beautification system can further
benefit both our Sketch2Stress and SketchDesc by improving the user’s im-
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perfect freehand sketch into a better format with refined part geometry and
global structure. Furthermore, our Sketch2Stress can reflect such improve-
ment on the structure after beautification (see fewer high-stress regions
with warmer colors in the right-side structural stress map). Figure 1.3 (b)
further displays a multi-view structural analysis scenario by incorporating
SketchDesc into Sketch2Stress to associate the corresponding force points
applied to the multi-view sketches of the same objects. As demonstrated
in Figure 1.3 (c), combining the sketch beautification system with our
SketchDesc can further transfer the beautified local geometric features to
other views by the multi-view correspondence computed by SketchDesc.

1.1 Beautification for Imperfect Sketches
of Man-made Objects

Due to frequently-observed defects in people’s freehand sketches, such as
poorly drawn curves, imperfect straight lines, detached and inter-penetrated
parts, and unclosed shape boundaries, there still is a gap between the user’s
freehand sketches and what the existing sketch-based algorithms [24, 72]
really wanted. Although the beautification problem has been studied for
decades, ranging from the primitives of sketched geometric objects [128] to
strokes in handwritings [158], systematic analysis of beautifying sketches
for man-made objects has rarely been studied. The key challenge here is
instantiating poorly drawn conceptual geometries and refining imprecise
structures simultaneously. Addressing the beautification problem of man-
made object sketches can inspire and facilitate various downstream sketch-
based applications such as sketch-based modeling [107, 24, 119], sketch-
based retrieval [13, 21], and other sketch understanding tasks [147].

As sketches are widely utilized in manufacture designing [62, 38, 61], ani-
mation drafting [116, 105] and HCI (Human-Computer Interaction) [145],
many algorithms have been presented to process freely drawn sketches tar-
geting vectorization [86], rough sketch cleanup [105], and simplification
[127, 68]. These methods are common in two places: first, they usually
produce more local modifications on input sketches but seldom consider or
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touch the global structures; also, the input of these methods is nearly ready-
to-use sketches with perfect strokes that are straight, mutually parallel, or
curved with perpendicular angles. Hence, the aforementioned approaches
are inapplicable to our task of beautifying the artifacts in the man-made
object sketches with diverse local distortion and global inconsistency. As
for the drawing assistance to the overall structures, prior approaches [2,
26, 60] are mainly designed in a heuristic and interactive way that pro-
vides a holistic scaffold or shadow guidance, and updates their guidance
based on drawn strokes during the drawing process. Alternatively, Fišer et
al. [32] proposed a rule-based stroke beautification approach, which, how-
ever, is still conditioned on the former strokes and confined to the stroke
sequences. Therefore, these methods cannot be applied as post-processing
to the existing hand-drawn sketches without the drawing order of individ-
ual strokes.

We observe that the traditional data-driven methods [105, 106] usually
lack robustness and fail to produce satisfactory beautification results for
freely-drawn sketches of man-made objects, especially when the inputs are
created with large variations. It is because their well-trained inference mod-
els are heavily confined to the distribution of the limited training samples.
We are primarily inspired by CompoNet[98], which jumps out of the bound
of the empirical distribution of the observed data and enriches the distribu-
tion diversity of generated samples by learning both novel part synthesis
and plausible part compositions. Unlike their generation task that tries to
synthesize infinite outputs from finite inputs, our beautification task can be
regarded as an opposite counterpart progress that aims to beautify infinite
freehand inputs to finite outputs.

In our sketch beautification approach, we treat a sketched object as a combi-
nation of sketched parts or part sketches and further transform the sketch
beautification problem into two sub-problems: part sketch beautification
and global structure beautification. Given a freehand input sketch, we ex-
pect to beautify the local geometry defects in the part beautification module
and address the overall structure issues in the structure beautification mod-
ule. To better instantiate the user’s conceptual sketches, we make several
strict constraints for this task. First, during the process of part beautifi-
cation, one should follow the user’s original drawing intention as much

1.1 Beautification for Imperfect Sketches of Man-made
Objects
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Fig. 1.4. We present a novel technique for beautifying freehand sketches of man-
made objects. Each triplet contains an input sketch (left), the sketch
after part beautification (middle), and the final result after structure
refinement (right).

as possible. Second, during the process of structure beautification, one
should maintain the user’s original structure as much as possible. There-
fore, directly replacing the user’s input part sketch with a better part sketch
retrieved from the database is not considered in our sketch beautification
method. Besides, the large transformation and structure vibrations are not
what we aim for. Therefore, we perform a mild refinement on the input
sketch in terms of both geometry and structure (see Figure 1.4).

In the part beautification stage, we argue that existing deep sketch repre-
sentations (i.e., CNN features from rasterized pixel maps [149] or RNN fea-
tures from stroke sequences [41]) are insufficient to perform beautification
on users’ conceptual freehand sketches, as shown in Figure 1.5. CNN repre-
sentations are widely utilized in natural image synthesis and can easily gen-
erate plausible and novel samples by interpolating existing images [138]
or the disentangled semantic attributes [53]. However, different from nat-
ural images, sketches are usually too sparse, with few valid elements or
points that cannot be smoothly interpolated with CNN representations. As
for RNN representations, existing methods cannot guarantee a precise re-
construction of input sketches, not to mention the more challenging inter-
polation task. In our sketch beautification approach, we propose a novel
implicit sketch representation, which is not only able to represent sketches
effectively but also can construct a continuous and smooth manifold to
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Interpolation

Reconstruction
RNN CNN Ours RNN CNN Ours

Fig. 1.5. Sketch interpolation based on CNN (first row), CNN after clean (second
row), and our implicit representation (third row), and reconstruction
with different representations (Bottom). Please zoom in to examine the
details (blurs and diffusion artifacts surrounding the interpolated strokes
of the CNN-based interpolation results (first row) and breaking strokes
and missing parts after cleaning the diffused noises (second row)).

synthesize and instantiate users’ conceptual drawings by interpolating the
existing sketches.

In the structure beautification stage, to simulate the structural errors that
exist in the user’s input sketches, we apply random affine transformations
to the ground-truth sketches in our training dataset and enforce our de-
signed sketch assembly model to learn these transformations between the
transformed part sketches and their ground truth counterparts. Then, sim-
ply feeding the input sketches to our sketch assembly model usually causes
learning vibration and failures in model convergence due to the sparsity of
the input sketches. To address this issue, we use part-level bounding boxes
to enhance the spatial feature of the separate part sketches. We propose an
IoU metric to further to evaluate the performance of the sketch assembly
model.

Training our beautification framework requires a considerably large amount
of part-annotated sketch data. Considering the limited training sketches,

1.1 Beautification for Imperfect Sketches of Man-made
Objects
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we collect a novel training dataset of part-labeled sketches by rendering
the edge maps with the semantic labels under the best view [29] from
the existing 3D shape repositories, i.e., PartNet [80], SDM-Net [34], and
COSEG dataset [103]. We evaluate the beautification results in terms of
faithfulness to the input sketch and the beautification quality. Intuitively,
faithfulness can be evaluated quantitatively and via a user study, while
beautification quality can only be evaluated via a user study due to its
subjectiveness. In our sketch beautification approach, we perform a quan-
titative evaluation of faithfulness and a perceptive study on beautification
quality to interpret the performance of sketch beautification methods more
comprehensively.

1.2 Sketch-based Shape Structural
Analysis

The design and fabrication process typically begins with sketching on pa-
per, followed by digitization, and eventually, using fabrication machineries
such as a waterjet, laser cutter, or 3D printer [52], as shown in Figure 1.1.
Conventional structural analysis is used in both the digitization and man-
ufacturing stages in a trial-and-error manner. This is a costly process, in
terms of time, labor, and materials. To facilitate product design and digital
fabrication, numerous structural analysis techniques [113, 155, 133, 91,
126, 87, 71] have been proposed to simulate the physical environment and
directly analyze or optimize digital prototype structures virtually at the dig-
itization stage. The goals of these techniques can be generally categorized
into several aspects: weakness analysis [155, 87, 58], structural enhance-
ment [113, 77], inner or surface material optimization [126, 91, 71, 151,
28, 31], and specified properties [144, 91, 100]. While these structural
analysis tools enrich product design and fabrication, they are less acces-
sible to designers at the early sketching stage since the effect of external
physical factors on an object being designed is unknown to users during
sketching.

In our Sketch2Stress work, we study the structural analysis of a sketched
object and use the resulting analysis to generate the stress effect of the
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1 2

3 4

Refinement Direction

(a) Structural Analysis on Freehand Sketches (b) Sketch-based Structure Refinement (c) Structural Analysis
 on a Product Sketch

Fig. 1.6. Our Sketch2Stress system supports users to easily perform structural
analysis on their freely sketched objects by assigning forces at desired
locations (shown in red dots) (a) and structural refinement (in each ex-
ample, the upper row shows the progressively refined sketches while
the bottom row shows our computed stress maps) on the weak regions
of problematic sketched objects with real-time feedback of a stress map
along with their editing operations (b). We also show that our system
can handle professional product sketches, e.g., those in the OpenSketch
dataset (c). In (c), we illustrate two examples of using professional prod-
uct sketches for structural analysis, starting from the concept sketches,
then the presentation sketches, the clean sketches, and finally, our gen-
erated structural stress maps.

object under external forces at specified locations, as displayed in Figure
1.6. Addressing this problem could enable designers to notice the potential
structural weakness, specify their design space under different force config-
urations, and further refine the object at the sketching stage. Furthermore,
this will open up possibilities for promoting sketch-based design and diag-
nosis to non-experts since sketching is an intuitive and universal tool for
creativity and expression for novice users.

Since the existing digital structural analysis methods are mainly performed
on 3D prototypes, a straightforward strategy to solve our sketch-based
structural analysis problem might be to first use sketch-based shape re-
construction methods [72, 63, 24, 108, 152, 39, 131], followed by a 3D
structural analysis method. However, existing sketch-based shape recon-
struction approaches suffer several common limitations. First, they require
specified multi-view sketches of the same object as input [72, 63], but their
creation is highly demanding for users. Second, when taking a single-view
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Fig. 1.7. Observations when using Ulu’s 3D structural analysis algorithm [126].
Red circles show that similar structures produce similar stress distribu-
tions. And green circles display that neighboring regions have similar
stress. Also, a sketch only is able to curve the geometry and structure of
a 3D shape to some extent.

sketch as input, they often demand additional conditions such as camera
parameters [152, 39] or 3D deformable templates [108, 131], making it dif-
ficult to reconstruct shapes with complex structures from one sketch only.
Since 3D shape reconstruction is a difficult task, we are interested in di-
rectly performing structural analysis based on only an input sketch and the
external force conditions.

While performing a structural analysis method [126] on 3D shapes, we ob-
served that: (i) shapes with similar structures have similar stress distribu-
tions under the same external force with the same location, direction, and
magnitude (see the regions with red circles in Figure 1.7); and (ii) on the
same shape, neighboring points in local regions undertake similar stress un-
der an external force (see the regions with green circles in Figure 1.7). This
makes it possible to use a data-driven strategy to solve our problem. There-
fore, we further transform the problem of sketch-based structural analysis
into an image-to-image translation problem [49, 132], where we leverage
a neural network to learn the mapping from input sketches to structural
analysis results conditioned on external forces.

Since there is no existing dataset for sketch-based structural analysis, we
construct a novel sketch-to-stress dataset by first defining rules to normal-
ize and uniform force regions on 3D shapes in the same category based
on Observation (i). Based on Observation (ii), we then uniformly sample

12 Chapter 1 Introduction



200 ∼ 300 key force locations on the surface of 3D shapes in each view
to analyze their structural soundness rather than exhaustively sampling all
the surface points, and apply 3D structural analysis to the shapes, where
the external forces are set with equivalent magnitude [126], and finally ren-
der multi-view sketches and the corresponding view-dependent stress maps
from the 3D structural analysis results. In this way, we collect a large-scale
dataset consisting of quadruples of an input sketch, a point map indicating
the force location, a normal map recording force directions of all possible
forces, and a corresponding structural stress map. Note that inheriting the
assumption of [126], we set the magnitude of external forces in our prob-
lem to be all the same and set the force directions to be the same as the
surface normals (pointing inward) at the force locations. Also, since Ulu
et al. [126] rely on the boundary shell to represent the shape structures of
3D models and further approximate the relationship between input forces
and resulting stresses on this representation, the same boundary shell rep-
resentation is inherited implicitly in our assumption for user-designed ob-
jects. Therefore, sketched objects corresponding to commonly seen real-
world objects might exhibit severely fragile regions (see the "problematic
structure" in Figure 4.11) since the inner material properties and inter-part
connection manners are not considered in the boundary shell setting.

To synthesize a structural stress map from an input sketch conditioned on
an external force with arbitrary location and uncertain direction, we present
a novel framework combining a one-encoder-two-branch-decoder genera-
tor with two discriminators: one branch in the generator is used to syn-
thesize a corresponding structural stress map from the input sketch and
the force location; the other branch aims to infer the direction (opposite-
normal) of the external force. These two branches jointly guarantee that
the generator can perceive the distinctive locations and directions of exter-
nal forces imposed on sketches. Two discriminators supervise the learning
process of the two branches of the generator.

With our trained network (for Sketch2Stress), users can easily check the
structural soundness of a sketched object under a single force assigned at
any location. In addition, a well-known physical axiom states that: "If
two forces act on an object in the same direction, the net force is equal to
the sum of the two forces". Based on this axiom, we present an efficient
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Fig. 1.8. Multi-view sketch correspondence results by SketchDesc on line drawings
synthesized from 3D shapes (top) and freehand sketches (middle and
bottom).

region-wise sketch-based structural analysis method to approximate the
stress effect of the net force at a local region by aggregating the stress maps
of multiple forces at different locations but in the same normal direction.

1.3 Correspondence Learning for
Multi-View Sketches

Although it is not challenging for human viewers to interpret missing 3D
information from single-view sketches, multi-view inputs are often needed
for computer algorithms to recover the underlying 3D geometry due to the
inherent ambiguity in single-view sketches. A key problem for interpreting
multi-view sketches of the same object is establishing semantic correspon-
dence among them. This problem has been mainly studied for 3D geometry
reconstruction from careful engineering drawings in orthographic views
[37]. The problem of establishing semantic correspondence from rough
sketches in arbitrary views (e.g., those in Figure 1.8 (middle and bottom))
is challenging due to the abstraction and distortions in both shape and view,
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and is largely unexplored. Addressing this problem can benefit various ap-
plications, for example, to design an interactive interface for users with
little training in drawing to create 3D shapes using multi-view sketches.

In our SketchDesc, we take the first step to learning to establish the seman-
tic correspondence between freehand sketches depicting the same object
from different views. This requires a proper shape descriptor. However,
traditional descriptors like Shape Context [7] and recent learning-based
patch descriptors [122, 78, 123] are often designed to be invariant to 2D
transformations (e.g. rotation, translation, and limited distortion) and can-
not handle large view changes (e.g. with view disparity greater than 30
degrees). Such descriptors, especially used for the applications of stereo
matching [43, 124, 18, 73, 142] and image-based 3D modeling [125, 69],
heavily exploit the features containing textures and shadings of images for
inferring similarities among different points or image patches, and thus are
not directly applicable to our problem with the input of multi-view sketches.
This is because sketches only contain binary lines and points, exhibiting in-
herent sparsity and ambiguity.

We observe that human viewers can easily identify corresponding points
from sketches with very different views. This is largely because human
viewers have knowledge of sketched objects from different views. Our idea
is thus to adapt deep neural networks previously used for learning patch-
based descriptors to learn descriptors for corresponding patches from multi-
view sketches.

Training deep neural networks require a large-scale dataset of sketch im-
ages with ground truth semantic correspondence. Unfortunately, such train-
ing datasets are not available. On the other hand, manually collecting
multi-view hand-drawn sketches and labeling the ground-truth correspon-
dence would be a demanding task. Following previous deep learning so-
lutions for 3D interpretation of sketches [83, 24, 63], we synthesize the
multi-view line drawings from 3D shapes (e.g. from ShapeNet [146]) by
using non-photorealistic rendering. Given the synthesized dataset of multi-
view line drawings as sketches, we project the 3D vertices of 3D models
to multi-view sketches to get ground-truth correspondences (Figure 5.2).
This data generation pipeline is to emphasize the correspondence from 3D
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shapes and force deep networks to learn the valuable 3D correspondences
among 2D multi-view sketches.

We formulate the correspondence learning problem into a metric function
learning procedure and build upon the latest techniques for metric learning
and descriptor learning [122]. To find an effective feature descriptor for
multi-view sketches, we combine a patch-based representation and a multi-
scale strategy (Figure 5.1) to address the abstraction problem of sketches
(akin to Sketch-A-Net [148]).

We further design a multi-branch network (Figure 5.4) with shared weights
to process the patches at different scales. The patch-based representation
helps the network specify the local features of a point on a sketch image by
embedding the information of its neighboring pixels. Our multi-scale strat-
egy feeds the network with local and global perspectives to learn distinctive
information at different scales.

The multi-scale patch representation allows the use of ground-truth corre-
spondences that are away from sketch lines as the additional training data.
This not only improves the correspondence accuracy but also enables cor-
respondences inside the regions of sketched objects (e.g., the cup in Figure
1.8), potentially benefiting applications like sketch-based 3D shape synthe-
sis. We evaluate our SketchDesc by performing multi-view sketch correspon-
dence and pixel-wise retrieval tasks on a large-scale dataset of synthesized
multi-view sketches based on three shape repositories: ShapeNet, Prince-
ton Segmentation Benchmark (PSB) [15] and Structure Recovery [101]
to show the effectiveness of our proposed framework. We also test our
trained SketchDesc on freehand sketches (Figure 1.8) drawn by volunteers
and collected from the OpenSketch dataset [38], which shows its robust-
ness against shape and view distortions.
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Related Work
2

I n this chapter, we review the literature that is closely related to our
works: Sketch Beautification (Section 2.1), Sketch Representations (Sec-

tion 2.2), Implicit Representations (Section 2.3), 3D Shape Structural Anal-
ysis (Section 2.4), Sketch-based Shape Reconstruction (Section 2.5), Image-
to-Image Translation (Section 2.6), Correspondence Establishment for Im-
ages (Section 2.7), and Deep Learning in Sketch Analysis (Section 2.8).
The Sections 2.1, 2.2, and 2.3 mainly discuss the related works to sketch
beautification problem. While Sections 2.4, 2.5, and 2.6 focus on dis-
cussing the existing techniques for sketch-based structural analysis task.
Finally, Sections 2.7 and 2.8 analyze the previous works related to the prob-
lem of inferring semantic correspondence among multi-view sketches.

2.1 Sketch Beautification

In the past decades, numerous algorithms were proposed to beautify free-
hand drawings. The earliest algorithmic beautification method with aes-
thetic constraints dates back to SketchPad [120]. Later, Pavlidis and Van
Wyk [90] proposed an algorithm for beautifying figures as a post-process.
Igarashi et al. [48] presented a system for rapid geometric design that beau-
tified strokes in an interactive way. Recently, great strides have been made
in the sketch simplification [127, 68], rough sketch cleanup [105] and
sketch vectorization [86]. Since these methods do not attempt to change
or beautify the global structure of input sketches, we do not conduct a de-
tailed review here. We refer interested readers to [141] for an insightful
survey.

The more related works to our sketch beautification approach are iCan-
Draw [26], ShadowDraw [60], and ShipShape [32]. iCanDraw and Shad-
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owDraw can output a sketch with a reasonable layout and more realistic
details by providing reference scaffolds or shadow layouts for users. How-
ever, as discussed in Subsection 1.1, limited by their heuristic and iterative
settings during drawing, they cannot beautify the existing sketches. For
ShipShape, this method only performed a curve-level beautification in an
interactive way by enforcing some geometric constraints to the afterward
curves based on the previous strokes, such as symmetry, reflection, and
arc fitting. These constraints are difficult to apply to the existing sketches
in practice without knowing the drawing order of the component strokes.
Besides, during its beautification process, extra efforts from users on the
structure adjustment are still needed. Instead, we study the part-level beau-
tification (Subsection 3.1.2) since the part labels are more accessible with
existing segment approaches [46, 65, 143] or user-specified annotations.
We further reduce user labor with our sketch assembly model by perform-
ing structure beautification automatically (Subsection 3.1.3).

A similar beautification problem was also explored in EZ-Sketching, where
Su et al. [117] proposed a three-level optimization framework to beautify a
sketch traced over an image. Their beautification process heavily relies on
the image being traced, which is missing in our sketch beautification task.
In DeepFaceDrawing, Chen et al. [14] presented a robust portrait image
synthesis method, which can handle rough or incomplete sketches as input.
By decomposing a face sketch into face components and projecting the face
component sketches to the component-level sketch manifolds, the input
freehand sketches can be implicitly refined for generating photo-realistic
face images. As the layouts or structures of human portraits are almost
fixed, their approach is not suitable for our beautification task. To handle
the diverse structure of sketched man-made objects, we propose a novel
sketch assembly module (Subsection 3.1.3), as inspired by [98].

2.2 Sketch Representations

A sketch is generally represented as either a rasterized binary-pixel map
[97] or vector sequences [41], or both [8]. Since the sketch datasets TU-
berlin [30] and Quickdraw [41] were introduced, the research commu-
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nity has seen many works in sketch understanding. For example, Yu et
al. [149] proposed a multi-scale and multi-channel CNN framework with a
larger kernel size for sparse raster sketches. Ha and Erc [41] introduced a
sequence-to-sequence variational auto-encoder with the bidirectional RNN
backbone for vectorized sketches. Later, the CNN and RNN representations
[140, 67] were combined to better represent sketches in their retrieval and
recognition tasks, respectively. Most of the subsequent works [8, 9] basi-
cally inherited and employed the off-the-shelf backbones for the specified
tasks. However, since the CNN-based representations are designed to learn
the distribution of all the pixels in the 2D image space rather than the solo
valid points on strokes, they tend to generate broken segments with shadow
effects (Figure 1.5 (Top)) during the interpolation process. The RNN-based
representations failed to reconstruct input sketches with vector sequences
precisely (Figure 1.5 (Bottom)). Therefore, we turn to implicit functions to
better represent part sketches in our sketch beautification approach.

2.3 Implicit Representations

Recently, implicit functions have attracted extensive attention in the re-
search community [25, 16, 94, 88, 76, 17], since they can represent 3D
shapes in a continuous and smooth implicit field. Existing implicit repre-
sentations typically used a spatial function to represent a shape by mapping
the inside and outside points distinguishably. In DeepSDF, Park et al. [88]
utilized a signed distance function (SDF) to represent a watertight shape
in 3D space where inside and outside points are respectively mapped to
negative and positive values, and the underlying surface is implicitly rep-
resented by a zero-crossing surface. Similarly, Mescheder et al. [76] rep-
resented a target shape with a continuous occupancy function, indicating
the probability of points being occupied by a shape. However, different
from watertight 3D shapes, sketches are often created with no concept of
inside or outside and are usually too sparse with limited valid points or
pixels in the 2D image space. Hence, the aforementioned implicit repre-
sentations cannot be directly applied to part sketches segmented from an
input freehand sketch To address this issue, we specially design an intuitive
2D implicit function (Subsection 3.1.2) for part sketches, where we map all
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sampled points of a canonical 2D space to two exclusive statuses: whether
its projection to the image space of the part sketch hits the stroke or not
(see Figure 3.3).

2.4 3D Shape Structural Analysis

Various recent works support computational analysis on the structural sound-
ness of 3D shapes. Especially with the emergence of 3D printing techniques,
numerous approaches were proposed for printed objects in a wide range of
tasks, from structural weakness detection [126, 113, 155, 87] to material
optimization [91, 71, 151, 28, 31]. Since it is challenging to convey the
variations of materials from one sketch, we do not review the material-
oriented approaches.

The first structural analysis work for 3D printed objects dates back to [121],
where Telea and Jalba identify thin and thick parts and estimate whether a
thin part could support its attached parts under several pre-defined geomet-
ric rules. Later, Stava et al. [113] use FEM (finite element method [47])
to discover and strengthen problematic components of a printed model un-
der the applied gravity load and 2-finger gripping loads. Then Zhou et al.
[155] propose an analysis technique to predict fragile regions under worst-
case external force loads by identifying potential regions of a structure that
might fail under arbitrary force configurations. Later, Langlois et al. [58]
present a stochastic FEM for predicting failure probabilities under the force
loads at contact regions. Different from previous works with specified force
load settings, Ulu et al. [126] propose a more general structural optimiza-
tion approach that examines 3D shapes with any force loads at arbitrary
locations and computes a feasible material distribution to withstand such
forces.

Different from 3D prototypes, sketches are usually created in the 2D space
with sparse content. This makes it difficult to apply finite element analysis,
which is the basic technique for most 3D structural analysis approaches.
To model the relationship between the input forces and the corresponding
structural stress of the sketched objects, in our Sketch2Stress, we translate
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ONet Pixel2Mesh Sketch2Model Sketch2MeshInput sketch

Fig. 2.1. Single-view sketch-based shape reconstruction methods. We can see
ONet [76], Pixel2Mesh, Sketch2Model, and Sketch2Mesh fail to recon-
struct the geometry details of the input sketches. ONet and Sketch2Mesh
tend to generate detached noises, broken parts, and the inconsistent
orientation of chair legs at the bottom row. While Pixel2Mesh and
Sketch2Model generate too coarse shape results where the former’s sur-
face patches are widely corrupted, and the latter’s local details are heav-
ily over-smoothed.

the sketch-based structure analysis problem to the data-driven image-to-
image translation task where we learn the mapping between the input
sketches and the structural stress responses conditioned on the variable
external forces from massive sketch-to-stress data pairs.

2.5 Sketch-based Shape Reconstruction

Using an additional step to convert input sketches to intermediate 3D shapes
with sketch-based shape reconstruction approaches usually requires extra
conditions such as multi-view inputs, camera parameters, and 3D category
templates, which are lacking in our scenario. Figure 2.1 further displays the
limitations of state-of-the-art single-view sketch-based shape reconstruc-
tion methods. The 3D meshes generated by ONet [76] and Pixel2Mesh
[131] have obvious artifacts, like detached parts and inverse patches, which
prevent performing FEM requiring continuous and closed input 3D sur-
faces. The meshes generated by Sketch2Model [152] lose too many ge-
ometry details. For Sketch2Mesh [39], its bottom reconstructed mesh
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(a) Reconstruction and Simulation (b) Our Sketch2Stress (c) GT Simulation

Force Force Force Force

Force
Point

Normal Direction

Fig. 2.2. Comparison of the reconstruction-and-simulation way (a) and our
Sketch2Stress (b). The models in (a) are the reconstructed meshes in
Fig. 2.1 (Bottom). The red arrows indicate the applied external forces.
In (b), the force is plotted on the input sketch, and the generated normal
map and stress map are side-placed. The ground-truth 3D stress simula-
tion is given in (c). Please zoom in to examine the details of the above
stress distributions.

has not only broken parts but also inconsistent legs compared with the
input sketch. Hence, none of these approaches could perform shape re-
construction from sketches robustly. Therefore, we turn to image-to-image
translation techniques to directly generate a feasible 2D structural analy-
sis result for an input sketch (Section 4.1). To demonstrate the faithful-
ness and effectiveness of our sketch-based structure analysis approach, we
provide a direct comparison between our Sketch2Stress approach and the
reconstruction-and-simulation approach applying stress simulation [126]
on generated meshes (Figure 2.1) by ONet/Sketch2Model/Sketch2Mesh
after post-cleanup. Compared with the reconstruction-and-simulation re-
sults, as shown in Figure 2.2, our Sketch2Stress can reconstruct a view-
dependent structure robustly and is more competent for the sketch-based
structure analysis task than the reconstruction-and-simulation way.

2.6 Image-to-Image Translation

Since Isola et al. [49] and Wang et al. [132] introduced the general-
purpose cGAN frameworks for diverse types of inputs, e.g., realistic im-
ages, sketches, and semantic masks, there are many sketch-based image
synthesis tasks using image-to-image translation techniques. The most re-
lated to our Sketch2Stress are 3D-aware approaches [118, 51] with sketch
inputs. For instance, Su et al. [118] present an interactive system for
high-quality normal map generation. Later, Jiao et al. [51] propose a

22 Chapter 2 Related Work



joint framework that leverages category and depth information to improve
shape understanding for tactile sketch saliency prediction. However, the
aforementioned methods cannot be directly applied to our sketch-based
structural analysis problem since they have no proper way to represent the
external forces with their designed frameworks.

Recently, diffusion models [110, 44, 111] have been used to obtain state-of-
the-art results in text-to-image synthesis and text-guided image synthesis
[75, 82, 92]. In spite of the impressive and realistic generation perfor-
mance of the aforementioned methods, it is still challenging for diffusion
models to impose precise spatial control on the generation outputs due to
the nature of the one-to-one mapping between the noise vector and the
corresponding ground truth data samples. This limitation makes diffusion
models unsuitable for our problem of sketch-based structural analysis un-
der arbitrary force conditions, which requires precise and faithful control
over the force locations. Additionally, diffusion models generate images
from noise vectors through several iterative intermediate steps during the
inference (denoising) stage, consuming more time than those deep net-
works. Therefore, existing diffusion models might not be suitable for our
real-time editing scenario where the system is supposed to output the in-
stant structural stress effects once it receives the user-specified external
forces.

2.7 Correspondence Establishment for
Images

2.7.1 Image-based Modeling and Stereo Matching

Image-based modeling often takes as input multiple images of an object
[69, 1] or scene [125, 109] from different views, and aims to reconstruct
the underlying 3D geometry. A typical approach to this problem is to first
detect a sparse set of key points, then adopt a feature descriptor (e.g., SIFT
[70]) to describe the patches centered at the key points, and finally conduct
feature matching to build the correspondence among multi-view images.
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Stereo matching [43, 124] takes two images from different but often close
viewpoints and aims to establish dense pixel-level correspondence across
images. Our problem of inferring semantic correspondence for multi-view
sketches is different from these tasks in the following ways. First, the view
disparity in our input sketches is often much larger. Second, unlike natural
photos, which have rich textures, our sketches have more limited informa-
tion due to their line-based representation.

2.7.2 Local Image Descriptors

Local image descriptors are typically derived from image patches centered
at points of interest and designed to be invariant to certain factors, such as
rotation, scale, or intensity, for robustness. Existing local image descriptors
can be broadly categorized as hand-crafted descriptors and learning-based
descriptors. A full review is beyond the scope of this dissertation. We refer
interested readers to [20] for an insightful survey.

Classical descriptors include, to name a few, SIFT [70], SURF [6], Shape
Context [7], and HOG [22]. The conventional local descriptors are mostly
built upon low-level image properties and constructed using hand-crafted
rules. Recently, learning-based local descriptors produced by deep convo-
lutional neural networks (CNNs) [122, 78, 123] have shown their superior
performance over the hand-crafted descriptors, owing importantly to the
availability of large-scale image correspondence datasets [136, 3] obtained
from 3D reconstructions. To learn robust 2D local descriptors, extensive
research has been dedicated to the development of CNN designs [42, 150,
122, 154, 135], loss functions [57, 85, 5, 78, 54, 79] and training strate-
gies [104, 19, 74]. The above methods, however, are not specially designed
for learning multi-view sketch correspondence. The work of GeoDesec [74]
shares the closest spirit to our SketchDesc and employs geometry constraints
from 3D reconstruction by Structure-from-Motion (SfM) to refine the train-
ing data. However, SfM heavily depends on the textures and shadings in
the image domain and is unsuitable for sketches.
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2.7.3 Multi-scale Strategies for Descriptors

Shilane and Funkhouser [102] computed a 128-D descriptor at four scales
in spherical regions to describe distinctive regions on 3D shape surfaces.
Recently, Huang et al. [45] proposed to learn 3D point descriptors from
multi-view projections with progressively zoomed-out viewpoints. Inspired
by these methods, we design a multi-scale strategy to gather local and
global context to locate corresponding points in sketches across views (Fig-
ure 5.1). Different from [45], which focuses on rendered patches of 3D
shapes, our SketchDesc considers patches of sparse line drawings with lim-
ited textures as input. To reduce the network size and computation, we
adopt a smaller input scale of 32 × 32 [122] rather than 224 × 224 in [45].
In addition, Huang et al. [45] used three viewpoints for 3D point descrip-
tors, while our SketchDesc extracts descriptors of points in sketches drawn
under a specific viewpoint for correspondence establishment across a larger
range of views.

2.8 Deep Learning in Sketch Analysis

With the recent advances in deep learning techniques, a variety of deep
learning-based methods have been proposed for sketch analysis tasks such
as sketch synthesis [40], face sketch-photo synthesis [130, 156, 157], sketch
recognition [148], sketch segmentation [66], and sketch retrieval [95, 140].
Among these works, [156] and [157] are the most relevant to our SketchDesc,
and they aim to model the correspondence between face photos and face
sketches. However, different from our SketchDesc to exploit the pixel-level cor-
respondence between sketches, they explore the image-level mapping be-
tween face photos and sketches. In general, none of these existing solutions
can be directly applied to our task of inferring the pixel-level correspon-
dence for multi-view sketches. To make deep learning possible in sketch
analysis, there exist multiple large-scale datasets of sketches including the
TU-Berlin [30], QuickDraw [40], and Sketchy [95] datasets. However, they
do not contain multi-view sketches and thus cannot be used to train our
SketchDesc network. A sketch is generally represented as either a raster-
ized binary-pixel image [95] or vector sequences [40, 66] or both [140].
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Since it is difficult to render line drawings from 3D shapes as a sequence
of well-defined strokes, we use rasterized binary-pixel images to represent
our training data (for SketchDesc) and input sketches.

2.8.1 Multi-view Sketch Analysis

Multi-view sketches are often used in sketch-based 3D modeling [93, 83,
72, 24, 63]. Early sketch-based modeling methods (e.g., [93]) require
precise engineering drawings as input or are limited by demanding mental
efforts, requiring users first to decompose a desired 3D shape into parts and
then construct each part through careful engineering drawings [37]. To al-
leviate this issue, several recent methods [83, 72, 24, 63] leverage learning-
based frameworks (e.g., GAN [36]) to obtain the priors from training data
and then infer 3D shapes from novel input multi-view sketches (usually
in orthographic views, namely, the front, back, and side views). How-
ever, these methods often process individual multi-view sketches in sepa-
rate branches and do not explicitly consider the semantic correspondence
between input sketches. Recently, a richly-annotated dataset of product
design sketches, named OpenSketch, was presented by [38], which con-
tains around 400 sketches of 12 man-made objects. However, the limited
data in OpenSketch is insufficient for training deep neural networks. In our
SketchDesc, we synthesized 6,852 sketches for 18 shape categories to learn
local sketch descriptors.

SketchZooms by Navarro et al. [81] is a concurrent work to our SketchDesc
and studies the sketch correspondence problem with a similar deep learning-
based solution. Our SketchDesc is different from SketchZooms as follows.
To generate training data for cross-object correspondence, the used 3D
shapes need to be semantically registered together in advance in Sketch-
Zooms, while our SketchDesc is more fine-grained as it explores training
data generation from individual 3D shapes for cross-view correspondence.
SketchZooms follows [45, 115] and adapts AlexNet [56] (40M parame-
ters) with the final layer replaced with a view pooling layer. In contrast,
our designed framework for SketchDesc has a smaller size (1.4M parame-
ters), and its high performance shown in our experiments paves the way
for our SketchDesc to be more easily integrated into mobile or touch devices
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where people can create and doodle their sketch drawings more easily and
conveniently.

2.8 Deep Learning in Sketch Analysis 27





Learning Part
Beautification and
Structural Refinement
for Imperfect Sketches
of Man-made Objects

3

I n this chapter, we first introduce the methodology of our proposed sketch
beautification system in Section 3.1. We then elaborate the experiment

details of our sketch beautification system in Section 3.2. Finally, we sum-
marize this chapter and discuss the limitations in Section 3.3.

3.1 Methodology

In this chapter, we mainly focus on freehand sketches created for man-
made objects that can be segmented partly. We treat this kind of sketches
as a combination of individual part sketches, since 3D man-made objects
often consist of semantically meaningful parts [64, 129, 137]. Our frame-
work for sketch beautification is illustrated in Figure 3.1. We first parse an
input freehand sketch depicting a man-made object like a chair to part-level
sketches, and then beautify the individual part sketches in the part beau-
tification module. In this module, we construct an implicit manifold for
each part. For each part, we can search and absorb the geometry features
from its key neighbors in this manifold for geometry beautification. Finally,
the beautified part sketches are recomposed as the final beautified sketch
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Fig. 3.1. System pipeline of sketch beautification. For an input sketch (a), we
first parse it to individual part sketches (b), and then synthesize the cor-
responding part references (c) by retrieval and interpolation. After per-
forming geometry beautification on the part sketches (b) towards part
references (c), we obtain the new part sketches (d) with well-beautified
geometry (see geometry differences between (b) and (d)). During the
stage of structure beautification, we adjust the imperfect structure (no-
tice the misalignment of chair arms) of the intermediate output (e) with
the help of part-level bounding boxes (e) and generate the final beauti-
fied sketch (f). Different colors in beautified part sketches (d) indicate
the different strokes. The colorful bounding boxes (e) denote the scales
and spatial locations of different part sketches in the image space (256
× 256).

by our sketch assembly model, which essentially performs the structure
beautification task.

3.1.1 Sketching Interface

Our algorithm requires semantic segmentation of an input sketch. Sketch
segmentation can be done automatically, as demonstrated in previous works
[46, 65, 143]. However, for simplicity, we design a simple interface (Fig-
ure 3.2) for users to interactively provide part-level semantic information
while sketching. The key enablers of this system are the part beautification
component and the structure beautification component. Once activated on
the interface (through “Part Beautification" and “Structure Beautification”
buttons), the two functions will run in the background and beautify the
user’s input automatically after the user finishes one complete sketch. We
provide more details of the mechanism of these two functions in Sections
3.1.2 and 3.1.3.
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Fig. 3.2. Our sketching interface.

Before sketching, a user first needs to select a target object category from
one of our prepared nine classes (e.g., airplane, chair, table). Our inter-
face then shows the corresponding set of part labels. It also provides part-
level shadows to provide initial geometry and structure guidance, similar
to ShadowDraw [60]. Unlike ShadowDraw, we do not update the under-
lying shadows dynamically during the drawing process since we hope to
give more freedom to users and not influence them too much. In this in-
terface, we provide several basic drawing tools for users to amend their
drawings, such as clear, undo, redo, etc. By clicking on a part label (e.g.,
airplane engine), the strokes drawn afterwards will be labeled with the se-
lected label automatically. In this way, we obtain a freehand sketch with
well-segmented parts. Note that our system saves each drawn sketch in
both raster and vector graphics formats. For a better drawing experience,
our interface supports the drawing of strokes with varying thickness. How-
ever, such strokes are pre-processed by extracting the skeletons [153] from
the user’s sketch input to have one-pixel width for further processing.
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Fig. 3.3. Pipeline for learning a sketch implicit representation.

3.1.2 Part Beautification

Given a rasterized freehand sketch with part annotations, we treat its com-
ponent sketches separately and beautify them individually in the corre-
sponding part-level implicit manifolds. Different from CNN representations
created for the dense and high-frequency RGB pixels, our novel implicit
representation works for the low-frequency and sparse sketched points in
the 2D image space. Existing implicit representations are not suitable for
our sketch points in the 2D space, since a 2D sketch is a kind of more dis-
crete representation having no inside and outside spaces and occupying no
continuous regions compared with the closed 3D shapes. We thus design
our own sketch implicit representation where we first sample points from
a 2D canonical space. We then project these points to the same-size image
space of sketches and record whether these points could hit any stroke of a
sketch. Finally, a discrete sketch can be represented by the sampled points
(hitting sketches) of this continuous 2D canonical field implicitly (see Fig-
ure 3.3).

Sketch Implicit Representation

An implicit field is typically defined by a continuous function over 2D/3D
space. In this work, we take a sketch as an implicit function (hit function)
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defined over the continuous coordinates P in a 2D canonical space, as given
in Equation 3.1.

H(p) =

1, p’s projection hits a stroke,

0, otherwise.
(3.1)

Here, we define the valid points those projections hit a stroke in a sketch
as 1 and the invalid points those projections hit the empty background as 0.
The underlying sketch is represented by the points with positive values, that
is H(·) = 1, similar to the zero-isosurface points in 3D implicit representa-
tions. We then employ a neural network fθ to approximate the implicit
function H(p) as fθ(p). Following [17], a CNN encoder is further added
to extract the feature code z from the input sketch. Conditioned on the
feature code, the implicit function can be further formulated as fθ(z, p).

Here, we adopt Multi-layer Perceptrons (MLPs) with rectified linear unit
(ReLU) as the implicit function fθ. To represent part sketches in a uniform
2D space, we center-crop and resize all the part sketches to a 128×128 scale.
We illustrate the model for learning our sketch implicit representation in
Figure 3.3. The part sample is first encoded to a 512D feature code and
then a sampled 2D coordinate is concatenated with the feature code as the
input to the implicit model. After the model converges, an input (part)
sketch can be represented as the implicit representation z and interpreted
back to the 2D image space by sampling points to fθ.

Loss function

We use a mean squared error between ground truth labels and predicted la-
bels for each point as the loss function for training sketch implicit function
fθ. Specifically, we formulate it as follows:

L(θ) =
∑

p∈P
∥fθ(p) − H(p)∥2, (3.2)

where P refers to the point set sampled from the 128 × 128 2D space and
H(p) is the ground truth value in our dataset given the query point p.
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Fig. 3.4. Smooth interpolation of the leftmost and rightmost samples with our
implicit representations.

Retrieval and Interpolation

With the part-level sketch implicit representations of our dataset {v1, v2,

. . . , vN}, we can synthesize the novel samples continuously and smoothly
by linear interpolation of implicit representations of existing sketches, as
shown in Figure 3.4. To further bridge the gap between the user’s concep-
tual freehand sketches and the existing part sketches in our dataset, we
adopt the same retrieval-and-interpolation strategy as [14] to instantiate
the user’s conceptual sketches with on-hand samples in our dataset by lo-
cal linear interpolation.

Specifically, we first take the implicit representation vq of an input part
sketch as the query to retrieve its top K neighbors in our dataset. In the
following steps, we construct a part-level manifold with the retrieved K
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Fig. 3.5. Pipeline for part-level geometry beautification.

neighbors as the basis vectors {vt1, vt2, . . . , vtK}, and project the vq to this
manifold as Equation 3.3.

min ∥vq −
∑K

i=1
wi · vti∥

2
, s.t.

∑K

i=1
wi = 1 (3.3)

where we set K = 3 in our implementation and calculate the unknown
weight parameter wi for each basis vector vti by solving this constrained
least-squares problem. We finally obtain the projected implicit representa-
tion vp by lineally interpolating the basis vectors locally:

vp =
∑K

i=1
wi · vti. (3.4)

Obtaining the projected implicit representation vp, we further interpret it
back to the 2D image space as the beautified reference for the input con-
ceptual sketch (see Figure 3.1 (c)).

Part-level Geometry Beautification

In this work, we consider the part-level beautification as a deformation
process that deforms each part sketch towards the corresponding reference
obtained from the retrieval-and-interp- olation step rather than directly re-
placing the input with the reference. In this way, we hope to preserve the
users’ original drawing intentions as much as possible. Thereby, given each
input part sketch and its reference, we design the beautification pipeline
as follows: correspondence matching and curve deformation. The former
step performs a coarse shape-level registration that transforms all points of
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the input sketch to approximate the general shape of the reference. Based
on the output of correspondence matching, the latter step then conducts a
fine-grained curve-level deformation that deforms the input sketch towards
the above intermediate output meanwhile keeping the original endpoints
of the input curves unchanged, as illustrated in Figure 3.5.

For correspondence matching between the input part sketch and the ref-
erence sketch, we adopt a classical non-rigid registration method [10].
Despite its robustness, this method fails to produce reasonable correspon-
dence results efficiently when being applied to our scenario. We speed up
this method from more than 3 seconds to around 0.3 seconds by adding
two weight decay parameters α and β that decrease exponentially with the
increase of the iteration T as shown in Equation 3.5. Here we refer to the
sketched points of the input and the reference as X and Y , respectively.

Ec = w1Ematch + αT · w2Erigid + βT · w3Earap,

Ematch =
∑n

i=1
∥zi − Py(zi)∥2

2,

Erigid =
∑n

i=1
∥zi − R · (xi + t)∥2

2,

Earap =
∑n

i=1

∑
j∈Ni

∥(zj − zi) − R · (xj − xi)∥2
2,

(3.5)

where Py(·), R, and t refer to the closest point in reference point set Y ,
the rotation matrix, and translate parameters, respectively. We initialize
zi with xi in the input point set X, and set w1 = 1, w2 = 100, w3 = 0.9,
α = 0.4, and β = 0.9. Note that we solve the overall objective function Ec

in an iterative way. In our experiment, T = 15 iterations are sufficient to
produce a satisfying result.

To keep the user’s original intention as much as possible, after calculating
the intermediate output of the first step, we further perform the curve de-
formation that deforms the recorded strokes S of the user’s input towards
the intermediate output following Equation 3.6. As we mentioned before,
our interface can also record the strokes during the drawing process.

Ed = Eposition + Eshape,

Eposition =
∑

s∈S
∥p0 − Xs

0∥,

Eshape =
∑

s∈S

∑n

i=1
∥δ(pi) − δ(Yi)∥.

(3.6)
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Fig. 3.6. Pipeline for learning structure beautification of the part-deformed
sketch. (a) Ground truth. (b) Synthesized part-deformed sketches. (c)
STN backbone of sketch assembly model. (d) Learned transformation
matrix. (e) Losses for part-level bounding boxes and sketches. (f) Re-
assembled output.

Here, δ(k) = ki−1 + ki+1 − 2ki, representing the local feature at each point.
XS

0 represents the two endpoints of a stroke s of the input sketch X while
p0 refers to the corresponding endpoints of the optimized curve. Yi repre-
sents the closest point of the intermediate output Y to the point pi of the
optimized curve under the Euclidean measurement. We optimize the en-
ergy function in the stroke level. The term Eposition enforces the optimized
curve to have the same start point and the end point as the input stroke,
and the term Eshape constrains the optimized curve to have the same shape
(curvature) as the corresponding reference stroke, as illustrated in Figure
3.5. In this way, the final beautified sketch keeps the same start points and
the end points as those in the input sketch. It can be regarded as that our
system is redrawing the input strokes based on their original endpoints in
a more professional way.
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3.1.3 Structure Beautification

Through the part beautification module, the geometry of input individual
part sketches can be well refined. However, there is still a structure in-
consistency existing in the input sketch. To address this issue, we further
introduce a structure beautification module to adjust the imperfect struc-
ture of the input sketch with the deformed parts. The basis of this module
is the sketch assembly model designed to learn spatial transformations for
beautifying the deformed sketches. Figure 3.6 illustrates the workflow of
training our sketch assembly model, where we first simulate the structure
inconsistency by randomly applying affine transformations to the individ-
ual part sketches in our dataset. In our implementation, we combine the
affine transformation operations of random scaling (ranging from 0.8 to 1.2
folds) and random translations (varying in x and y directions with −3 to 3
pixels offsets) in the image space (see Figure 3.6 (b)). As there is no obvi-
ous rotation observed in part sketches and our part beautification module
is able to reduce such rotation effects on part sketches, we do not apply the
random rotations to our training data here. We then design a sketch assem-
bly network (Figure 3.6 (c)) with the backbone of the spatial transform
network (STN, in short) [50] to learn the inverse mapping that transforms
the distorted parts back to their ground-truth locations (see Figure 3.6 (a)).
To prevent training vibration caused by the sparse input (sketch), we fur-
ther introduce the part-level bounding boxes M (Figure 3.6 (e)) to enhance
the spatial features of the part sketches S.

Loss function

We use the following loss function for training the assembly network:

L =
∑

p∈P
λ1∥Sa

p − SGT
p ∥ + λ2∥Ma

p − MGT
p ∥

+ λ3∥Tp − T Identity
p ∥2

2,
(3.7)

where we regard the three loss terms as sketch loss, bounding box loss,
and regularization loss respectively. Sa

p and Ma
p are the part sketch and

the part bounding box with the random affine transformation, respectively,
while SGT

p and MGT
p are the corresponding ground truth in our dataset. To
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stabilize the learning process, we further constrain a regularization loss on
the learned transformation matrix Tp to enforce it to have a slow and mild
update rather than a large vibration during the learning process. T Identity

p

refers to the Identity mapping matrix. We set λ1 = 100, λ2 = 1, and λ3 = 1
in the experiment.

3.2 Experiments

We conducted extensive experiments on freehand sketches drawn by 8 vol-
unteers with our sketch interface. Two of them were professional interior
designers with years of drawing experience, and the rest were ordinary stu-
dents aged 26 to 29 with no professional drawing skills. Given an object
category, we asked the invited volunteers to sketch the man-made objects
in their minds as casually as possible. They can draw any shape of part
sketches around the common regions of the part shadows, like the airplane
presented in the sketching canvas of Figure 3.2. Finally, we collected more
than 200 freehand sketches and 15-45 sketched objects for each category.
See Figures 1.4, 3.8, and 3.9 for more representative drawings and the
corresponding beautification results. We also construct a large dataset of
part-labeled synthesized sketches to train the part-level sketch implicit rep-
resentations and the sketch assembly model in our sketch beautification
framework. We showcase the rendered part-annotated sketches under the
best view from the existing 3D shape repositories including, PartNet [80],
SDM-Net [34], and COSEG dataset [103] in Figure 3.7. Our sketch dataset
contains 17,172 sketches with clear part annotations distributed over 9
man-made object categories that are commonly observed in our daily life.
Figure 3.7 gives a representative sketch under each category. We provide
more details of the data distribution of our synthesized sketch dataset in
Table 3.1.

Implementation Details We implemented our sketch implicit model and
sketch assembly model with the PyTorch framework [89] and used the
Xavier initialization [35]. To train sketch implicit representations for our
128 × 128 part sketch, we sampled both the valid sketched points and the
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Fig. 3.7. Different categories and part annotations in our dataset. Note that the
lamp class has two different labeling strategies (see the part annotations
of LampA and LampC).

Categories #Samples #Parts Source
Chair 5,962 4 PartNet
Table 4,440 3 PartNet
Airplane 2,467 4 SDM-Net
Car 1,813 3 SDM-Net
Guitar 741 3 SDM-Net
Monitor 559 3 SDM-Net
Vase 298 4 COSEG
Mug 211 2 COSEG
LampA 510 3 COSEG
LampC 171 3 COSEG

Tab. 3.1. Data distribution of our synthesized sketch dataset. The #Samples and
#Parts refer to the number of synthesized sketch samples and compo-
nents of a sketch in different categories. The Source tells which 3D
repository our man-made object sketches are rendered from.

invalid points from the 2D image space, in total 16,384 points. We demon-
strate the parameter structures of the sketch implicit model and sketch
assembly model in the Appendix B. The two models were trained on an
NVIDIA RTX 2080Ti GPU and optimized by the Adam optimizer (β1 = 0.9
and β2 = 0.999) with the learning rate of 5e−5 and 1e−4, respectively. Here
we trained the two models to full convergence until the learning rate de-
cayed to relatively small. Note that training the sketch implicit model takes
around 48 hours on a single GPU with the batch size of 1 for one category
on average. The batch size for training sketch assembly is 64. The iteration
epochs for the two models were set as 800 and 600, respectively. Although
it takes a long time to train these two models during the training stage,
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our whole sketch beautification pipeline only spends around 1 second to
beautify an entire sketch.

3.2.1 Baselines

To verify the effectiveness of our proposed sketch beautification pipeline,
we compare our approach with existing methods both qualitatively and
quantitatively. We use four baselines in our experiment and detail them as
follows.

One of the baselines is the Laplacian smoothing algorithm [112]. We im-
plement this method on the stroke level to process the input freehand
sketches. The next one is a naive instance-level and retrieval-based ap-
proach. We take the user’s freely sketched input as the query and retrieve
its top-1 candidate from the dataset as the beautified result. In our imple-
mentation, we use the HOG [22] descriptor, which is efficient and able to
capture the spatial features of the sparse sketches. Then, we further de-
signed a part-level retrieval baseline. Different from instance retrieval us-
ing the entire input sketch as the query, we first parse the user’s freehand
sketch to individual parts and utilize the separated part sketches (not the
entire sketch) to retrieve the corresponding top-1 part results from the part-
annotated dataset with the HOG descriptor, and finally replace the original
part sketches with the retrieved part candidates as the final beautified out-
put. Another baseline is a learning-based sketch simplification approach
Mastering Sketching [105]. Although this generative method is designed
to remove the superfluous details (i.e., the repetitive scribbles) and synthe-
size (or strengthen) the important lines for the rough sketches, we utilize
it in our sketch beautification task to generate the beautified results for the
input freehand sketches conditioned on the strokes that are identified as
important by its learned model. In our implementation, we directly utilize
their original well-trained inference model to process the user’s freehand
drawings. Note that since the outputs of Mastering sketching are generated
with bold effects, we post-process them with a thinning operation [153] to
remove the redundant pixels and conserve the clear skeletons as final beau-
tification results. For the closely related work ShipShape [32], since it was
fully integrated into a quite old version of Adobe Illustrator and its plugin is
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Fig. 3.8. Qualitative comparison of different approaches for sketch beautification.
Please zoom in for better visualization.

no longer accessible today, we can only discuss the difference between our
approach and ShipShape (Section 2.1) instead of conducting experimental
comparisons.

3.2.2 Qualitative Evaluation

We evaluate our method and the competitors, namely, Laplacian smoothing,
instance retrieval, part retrieval, and Mastering Sketching on freely drawn
man-made object sketches. Figures 3.8 and 3.9 show the beautified results
of different methods on the freehand sketches. The visual comparisons
show that our method produces the most satisfying results across various
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Fig. 3.9. Qualitative comparison of different approaches for sketch beautification.
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categories of sketches, regardless of the local geometry or the global struc-
ture.

We observe that the outputs of Laplacian smoothing and Mastering Sketch-
ing basically keep the same shape as the input sketches. Compared with
the input, the former results lose some sharp features (see car body, chair
seat, and guitar body in Figure 3.8 (c), (d), and (e) respectively) and
the latter are generated with bold or shadow effects. Although Master-
ing Sketching succeeds in healing some small seams between parts (e.g.,
the head and neck parts of the guitar sketch in Figure 3.8 (e)) by gener-
ating more pixels (along the two strokes of the guitar neck towards the
guitar head) based on the original sketches (e)), it fails to beautify the
larger seams (see the defects between the neck and body parts of the gui-
tar sketch in Figure 3.8 (e)).
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When visually inspected, the results produced by instance retrieval have
the most dissimilar appearance compared with the input sketches. Due to
the freedom and abstraction of hand drawings as well as the limited scale
of our synthesized sketch dataset for retrieval, instance retrieval cannot
find a pleasing beautified counterpart from the existing sketch dataset for
the user’s input sketch. Although part retrieval tries further to approximate
the input sketches from a more fine-grained level, it only alleviates the
dissimilar phenomenon. Still, these retrieval-based methods have no way
to maintain the user’s original drawing intentions.

To better demonstrate our sketch beautification method, we further present
the intermediate outputs of the part beautification module in Figures 3.8
and 3.9. Unlike previous learning-based or retrieval-based competitors, our
part beautification module not only produces the most pleasing and elegant
part sketches by redrawing the input part strokes leveraging the knowledge
of a large number of synthesized part-level sketches, but also retains the rel-
ative close shapes to the original inputs without introducing extra strokes,
missing any strokes, and making no change to the input shape. However,
as shown in Figures 3.8 and 3.9, some structure defects like seams (b),
penetration (j), and misalignment (g) between part sketches still exist in
the intermediate outputs of our part beautification module. This further
emphasizes the importance of structural adjustment. When combined with
the other component, our structure beautification module, we can obtain
the most beautified outputs with pleasing part geometries and convincing
global structures. However, since there is no existing standard criteria to
evaluate our proposed sketch beautification approach and its competitors,
we give our own insights and present the evaluation strategy as follows: In
fact, beautifying a sketch means adding changes to it while respecting the
original sketch. There is no perfect solution here, since two main aspects
(i.e., improving beautification quality while respecting the original sketch)
need to be balanced during the beautification. Regarding faithfulness to
the input sketch and beautification quality, we further conduct a quantita-
tive evaluation on the beautification faithfulness and a perceptive study on
the beautification quality in Subsections 3.2.3 and 3.2.4.
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Methods mCD ↓ mEMD(× 102) ↓
Instance Retrieval 15.55 5.92
Part Retrieval 8.22 5.20
Laplacian Smoothing 3.44 4.52
Mastering Sketching 1.40 2.04
Ours (only part beautification) 4.59 4.62
Ours (full pipeline) 6.84 5.04

Tab. 3.2. Quantitative evaluation on the faithfulness of the beautified results (pro-
duced by different sketch beautification methods) to the input sketches.

3.2.3 Quantitative Evaluation on Faithfulness

To quantitatively evaluate the performance of different beautification ap-
proaches in preserving the user’s original drawing intentions, namely, faith-
fulness, we report the statistic values of two metrics for the aforementioned
methods in Table 3.2. To measure the difference between a beautified result
and the user’s original freehand sketch, we adopt the Chamfer Distance-L2
(CD) and Earth Mover’s Distance (EMD) as the evaluation metrics (lower is
better) for the faithfulness evaluation in the sketch beautification task. The
former metric is employed to measure the point-wise distance between the
sketched objects in two sketches and the latter one is utilized to compute
the distribution-level distance of two point distributions over the entire im-
age space (256 × 256). Given a pair of the user’s freely sketched input and
the beautified output produced by one of the compared methods, we calcu-
late the Chamfer Distance of the only valid sketch pixels (i.e., excluding the
background pixels) in the two sketches. When computing the Earth Mover’s
Distance, we preserve both the sketch pixels and the background pixels and
treat the pair of the input and output sketches as two distributions. Finally,
we average these two metrics over pairs of sketches before and after beau-
tification in our collected freehand sketch dataset and present the mean
values of CD and EMD in Table 3.2.

Consistent with what is observed from Figures 3.8 and 3.9, our method
outperforms its retrieval-based competitors while falling behind Master-
ing Sketching and Laplacian smoothing quantitatively. It is reasonable
that the results of Mastering Sketching have the closest distance to the
input sketches since this method inherits (or accepts) all the input strokes
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with limited pixel-level beautification. For Laplacian smoothing, since this
method only slightly changes the position of the sketched points by smooth-
ing the local-level strokes, it is easier for this method to achieve a remark-
able performance (the second) in faithfulness evaluation. While the fine-
grained part retrieval outperforms the instance retrieval significantly, it is
still inferior to our method. The beautified outputs of our part beautifi-
cation module and our full pipeline achieve the competitive performance
to the Laplacian smoothing in preserving user’s original drawing inten-
tions (the third and the fourth close to the user’s freehand sketches). It
is expected that the results of our part beautification module have the
closer distance to the users input sketches compared with our full pipeline
since the part beautification module only beautifies the curve shape of the
part sketches without adjusting the scales or locations of the part sketches.
Just as we discussed before, there are still a lot of structure errors (e.g.,
seams, penetration, and misalignment) in the intermediate beautified out-
puts, as shown in Figures 3.8 and 3.9 (Ours (only part beautification)).
To correct such structure errors during the structure beautification stage,
a small range of structure refinement (including pixel-wise translations
and scalings) is applied to the beautified part sketches. Therefore, it is
inevitable that our full pipeline combining the part beautification and struc-
ture beautification modules slightly enlarges the distance to the input free-
hand sketches. For the faithfulness aspect of the sketch beautification
task, since our framework is proposed to beautify both the local geome-
try and global structure of input sketches, our method cannot keep the in-
put sketches almost unchanged as Mastering Sketching. But our approach
does not heavily change the input sketches as instance and part retrieval,
and can also be regarded as a larger “enhancement” operation (making the
original input sketches aesthetically more beautiful in both local curve and
global shape) to some extent. For the evaluation on the beautification qual-
ity of the different sketch beautification methods, we demonstrate it with a
user study in the next section.
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3.2.4 Perceptive Study on Beautification Quality

It is known that the concept of beautification is highly relevant to human
preference and perception. Therefore, to evaluate the beautification quality
of the beautified sketches produced by different methods in Section 3.2.1
(namely, Laplacian smoothing (LS), Mastering Sketching (MS), instance re-
trieval (IR), part retrieval (PR), our part beautification module only (Ours
(PB)) and our full approach), we further conducted a user study to evaluate
the performance of the compared approaches in the sketch beautification
task.

Specifically, we first randomly picked a set of 15 input sketches from the
drawn freehand sketches, spreading all the categories in our dataset. We
then applied the aforementioned six sketch beautification methods to each
input sketch to generate the beautified results. Figures 3.8 and 3.9 display
some representative examples of inputs and outputs used in our user study.
The evaluation was done through an online questionnaire. There were in
total 23 participants (15 males and 8 females) in this study. We showed
each participant sets of an input sketch and six beautified sketches gener-
ated by the compared approaches in random order set by set. Each par-
ticipant was asked to select the most beautiful result in each set regarding
the visual aesthetics from both aspects of the local geometry and the global
structure. Finally, we received 23 (participants) × 15 (input sketches) =
345 subjective evaluations.

Figure 3.10 shows the statistics of the voting results. We conducted one-
way ANOVA tests on the preference voting results, and found significant
effects for aesthetic preference to our method (F = 65.88, p < 0.001). The
further paired t-tests show that our method (mean: 13.93) got significantly
more votes than all the other methods, Mastering Sketching (mean: 3.13,
[t = 2.14, p < 0.001]), Laplacian smoothing (mean: 2.47, [t = 2.14, p <

0.001]), instance retrieval (mean: 1.00, [t = 2.14, p < 0.001]), part retrieval
(mean: 0.47, [t = 2.14, p < 0.001]), and our part beautification module
(mean: 2.00, [t = 2.14, p < 0.001]).

To summarize, our approach achieved the best performance that largely sur-
passes its competitors under human aesthetic perceptions. Although there
are slightly higher deviations in the beautified results generated by our
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Fig. 3.10. Box plots of the average preference voting over the prepared questions
(beautification quality) for each method. MS, LS, IR, and PR stand for
Mastering Sketching, Laplacian smoothing, Instance retrieval, and Part
retrieval, respectively. Ours (PB) and Ours refer to the part beautifica-
tion module and the full pipeline of our sketch beautification approach,
respectively.

method compared with the original input sketches, our beautified sketches
are still able to be faithfully voted as the best beautification results for the
given sketches by the invited users. In addition, our approach successfully
beautifies the local-level part geometry and corrects the global-level struc-
ture errors of input sketches. In this way, our proposed method helps to
improve the beautification quality of input freehand sketches significantly.
We show more beautification results of our method (including the inter-
mediate outputs after part beautification and final results after structure
beautification) in the Appendix B.

3.2.5 Ablation Study

Since we have demonstrated the roles of the part beautification module and
the structure beautification module of our sketch beautification pipeline
qualitatively and quantitatively in the above two subsections, and detailed
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Input Loss mIOU(%)↑ mCD↓ mEMD(×102)↓
sk skloss 0.00 +∞ +∞
sk (sk+regu)loss 83.38 5.85 6.75
sk+bb bbloss 91.87 2.79 5.42
sk+bb (sk+bb)loss 91.83 2.79 5.42
sk+bb (sk+bb+regu)loss 91.89 2.78 5.40

Tab. 3.3. Ablation study of our designed mechanism for the sketch assembly
model. The sk and bb in the first column are the inputs of the sketch
and the bounding box, respectively. The skloss, bbloss, and reguloss
in the second column refer to the supervision losses of the sketch, the
bounding box, and the regularization term, respectively.

the key components of the part beautification module in Section 3.1.2, we
do not conduct the redundant ablation studies for the part beautification
module here.

Hence, in this subsection, we mainly focus on validating the effectiveness
of the key components in the structure beautification module. Since the
sketch is a kind of sparse representation, it is a nontrivial task for our sketch
assembly model to represent and learn its spatial transformations precisely
and effectively. To validate our designed mechanism of the sketch assembly
model, we perform ablation studies of its key components in turn, namely,
the sketch loss, the bounding box loss, and their combinations with the
regularization loss (see Table 3.3).

Specifically, we use 1,000 randomly sampled synthesized sketches of the
Chair as the ground truth since this category has the most complex and
challenging structures in our dataset. We then apply random affine transfor-
mations to the parts of the ground truth samples five times and take these
5,000 deformed sketches with the warped parts as the benchmark input. Fi-
nally, we evaluate the performance of the trained sketch assembly models
under different training strategies by measuring the disparity between their
assembly outputs and the ground truth. To better reflect the performance
of the methods in the sketch assembly task, we compute a region-based and
part-level IOU metric on bounding boxes of the transformed part outputs
and the corresponding part ground truth, as formulated in the following
equation:

IOU = 1
Np

·
∑

p∈P

Ma
p · MGT

p

Ma
p + MGT

p

, (3.8)
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Fig. 3.11. Visual comparison of different supervision losses during the training
process. Please zoom in for better visualization (in particular for “skloss
only”).

where Np is the number of parts P in a sketch, Ma
p and MGT

p are the part-
level bounding boxes of the assembled sketches and ground-truth sketches,
respectively. We also calculate the Chamfer Distance-L2 (CD) and Earth
Movers Distance (EMD) between the assembled and ground-truth sketches
to further verify the performance of the ablated sketch assembly models.
Table 3.3 reports the mean values of the above metrics. We also show the
performance of different components in the sketch assembly task qualita-
tively in Figure 3.11.

In our experiments, we found that only utilizing the sketch loss cannot su-
pervise the learning process of spatial transformations of sparse sketches.
Due to limited valid pixels in sketches, the network tends to shift its focus
from sketched pixels to the background pixels during the training process,
even under the L1 loss of the input and output sketches. With the number
of training epochs increasing, the model degrades rapidly and ignores the
sketched pixels until the part sketches are rescaled to none. Hence, the
mean IOU value of ’skloss only’ model in Table 3.3 is 0. The other two met-
rics also show the failure of training on sketch input with the sketch loss
only. This can be further witnessed in Figure 3.11 (b). Note that we screen-
captured this subfigure of “skloss only” at the very beginning of training
since the part sketches would disappear soon after several further epochs.
Along with the degradation of “skloss only” model, we observed a signifi-
cant increment in the parameters of the learned transformation matrices.
We further designed and added the regularization loss to punish this huge
vibration of the learned transformation matrices. However, although the
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input part sketches are no longer shrunk to nothing by impelling the ad-
ditional regularization loss over the learned transformation matrices, the
network still failed to learn meaningful spatial transformations (just ran-
dom translation or scaling under the constraint of the regularization loss),
as shown in Figure 3.11 (c). Only by introducing the bounding box input
and the corresponding bounding box loss, the networks were able to learn
the spatial transformation of sparse sketches stably and effectively (see the
inputs containing ’bb’ and the losses with ’bbloss’ in Table 3.3 and Figure
3.11 (d-f)). With the combination of the sketch loss, the bounding box loss,
and the regularization loss, the network achieved the best performance, as
shown in Table 3.3 quantitatively and Figure 3.11 (f) qualitatively. These
results further confirm the necessity and importance of our design choices
for the structure beautification module.

3.3 Discussion

We have introduced an intuitive and generic beautification approach for
freehand sketches depicting man-made objects by conducting part-level ge-
ometry beautification and global structure refinement sequentially. As one
of the key components in our approach, the sketch implicit model can be
easily plugged into contemporary deep neural networks for a variety of
tasks relevant to sketches including sketch recognition, classification, re-
trieval, reconstruction, and generation thanks to its promising representa-
tion capacity over existing representations. The other component, i.e., the
sketch assembly model, provides a robust and effective solution for com-
positing sparse 2D components by having the part-level bounding boxes.
The whole beautification pipeline could further inspire and boost the down-
stream applications that operate over freehand sketches as input. However,
beautifying a freehand sketch under an arbitrary view is still challenging
for our method. We leave this as future work to explore.

Our method has some limitations. First, in our method, all the training sam-
ples of the sketches of man-made objects are rendered under the canonical
view (best view) for each category. This limits the adaptation ability of
our method to freehand sketches with large view variations or multi-view
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Fig. 3.12. Failure cases of our sketch beautification method.

sketches. Although this is partially solved by adding a shadow guidance
to constrain the user’s input, we are interested in addressing this issue in a
more elegant way [147]. Second, a key merit of our method is the represen-
tative power of the sketch implicit representations that can interpolate the
sketched points smoothly and continuously. But this implicit representation
requires a longer training time than the CNN representations on the same
input data, since the implicit model needs to sample all the coordinates
and remember the ground truth value of each point in the 2D image space.
One possible solution for speeding up the training process is to change the
sampling strategy, e.g., by keeping sampling the points close to the strokes
instead of sampling all the points from the whole 2D space. Third, while
our method is able to instantiate conceptual freehand sketches, our ap-
proach could fail if input sketches are drawn too poorly or too complexly,
as shown in Figure 3.12. If a user draws a very unnatural sketch (see the
triangle-like wheels of a car on the left-top, our method might not follow
the user’s drawing intention and even totally changes the geometry of part
sketches drawn by the user. This violates the beautification constraints we
set in this chapter (as discussed in Section 1.1). While a user sketches a
very complex part (see the chair back with too many sticks on the right),
our approach also cannot beautify such a part. This is due to the failure
of the correspondence matching step in Section 3.1.2. It is known that cor-
respondence matching is still an open problem in the research community.
Therefore, the improvement on registration and correspondence matching
could also further boost the performance of our method. Lastly, as humans’
perception and preference for beautification concepts are similar but not
exactly the same (shown in Figure 3.10 in our perceptive study), ideally,
users should be allowed to adjust the degree of beautification (more signif-
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icant beautification would lead to larger deviation from the input sketch).
In our approach, the beautification function is designed in a closed and au-
tomatic way for efficiency reasons. In the future, we would like to extend
our sketch beautification approach to allow for more user control.
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Sketching with Structural
Stress Awareness

4

W ith our proposed sketch beautification approach (Chapter 3), both
the part geometry and global structure of a freehand sketch can be

well refined. However, the structural soundness of the sketched objects un-
der external environmental forces is still unknown to designers and novice
users during the process of product design and digital fabrication. In this
chapter, we propose our solution of Sketch2Stress to bridge this gap. We
present the methodology of our Sketch2Stress in Section 4.1. We intro-
duce quantitative, qualitative, and ablation evaluations in Section 4.2. We
present one application of Sketch2Stress in Section 4.2.5. Finally, we sum-
marize our Sketch2Stress in Section 4.3.

4.1 Methodology

In this chapter, we focus on the study of structural analysis of sketched ob-
jects under external forces at user-specified locations. Adapting the struc-
tural analysis task from informative 3D objects to 2D sketches is nontrivial
due to the ill-posed nature of sparse sketches to represent continuous and
closed 3D surfaces as well as the challenge of representing external forces
applied to the sketched objects. To address these issues, we simplify the
problem and make our assumptions as follows: (i) We decouple the exter-
nal forces to the constant force magnitude of 100N and directions based on
the estimation of a normal map (the force direction and the normal direc-
tion at the force location are opposite in our approach, as shown in Figure
2.2 (b)). (ii) Then we utilize an effective data-driven way to approximate
the mathematically/physically precise stress by constructing a novel large-
scale sketch-force-stress dataset and proposing a new two-branch (for force
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Fig. 4.1. Overview of the two-branch generator of Sketch2Stress. Given an input
sketch (upper left) and an input point map (lower left) indicating a force
location, the two-branch generator uses its encoder to learn a sketch-
force joint feature space, and then leverages two decoders to synthesize
the corresponding stress map (lower branch) and a normal map (upper
branch). We use warmer colors (reds and yellows) to show high stress
and cooler colors (greens and blues) to show low stress. The normal
map infers the force direction at the input force location. A shape mask
and a point-attention mask are proposed to further emphasize the shape
boundaries and the user-specified force location during the generation
process.

location and direction) generation pipeline (see Figure 4.1). (iii) Note that
the materials of the sketched objects are assumed to be the same with linear
isotropic materials and small deformations, following [126].

To faithfully represent the external forces applied to sketched objects, we
utilize a set of 2D point maps P to specify the force locations (one point
map for each force location) and a 2D normal map n ∈ R256×256×3 of each
view of an object to record the force direction −np at the corresponding
location p. In this way, we decouple the original 3D external forces into
the above 2D representations that can be further treated as conditions for
mapping the input sketches X to the corresponding stress maps Y . Let N

denote the set of normal maps.

As illustrated in Figure 4.1, Our framework for sketch-based structural anal-
ysis consists of two components: (1) a two-branch generator G: (x, p) →
(n, y), including a common sketch-force encoder EG

c and two separated
decoders DG

n and DG
y for the normal map n and the stress map y, illus-

trated in Figure 4.1, and (2) two multi-scale discriminators Dn and Dy for
normal and stress maps. Specifically, given an input sketch and the con-
dition of a point map, the common encoder of our two-branch generator
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constructs a joint feature space EG
c (x, p) for the input sketch and the input

point map. The subsequent two decoders (7-layer up-sampling and con-
volution) DG

n and DG
y infer the correct normal directions ñ and a feasible

structural stress map ỹ from this joint feature space, respectively. These two
branches enforce that the common encoder EG

c should learn a joint feature
representation that captures not only the geometry and normal directions
of the input sketch but also the distinctive force location on the input point
map. Note that the feature maps in the normal decoder DG

n are layer-wise
concatenated to the stress decoder DG

y to enrich its structure perception.
Finally, the two multi-scale discriminators distinguish real images from the
translated ones at 256×256, 128×128, and 64×64 scales. This is a standard
way to represent distinctive, fine-grained details in images [132]. Finally,
we jointly optimize G, Dn, and Dy with the objective:

LG,D = Ey[log Dy(y)] + En[log Dn(n)]
+ Ex,p[log(1 − Dn(G(x, p))) + log(1 − Dy(G(x, p))],

(4.1)

where x, p, n, and y refer to the quadruple of an input sketch, a point map,
a normal map, and the corresponding stress map.

Shape Constraints To overcome the issue that the generated pixels are
often outside of the shape boundary of the sketched objects in the stress
maps, we further predict a one-channel shape mask M̃s (Figure 4.1) from
the joint feature space EG

c (x, p). This shape mask is also useful for reducing
shape ambiguity in normal map generation. Therefore, we use a shape loss
Lshape to measure the L1 distance between a generated shape mask and the
ground truth, as formulated below:

Lshape = L1(M̃s, Ms). (4.2)

Force-point Constraints To emphasize the importance of a force location
in the point map, we compute a point attention map Mp by multiplying
a point-centered distance map 1 (emphasizing the spatial importance of

1This is computed by D = 1
|Q|

∑
q∈Q

∥qi − qf ∥2, qi and qf are the locations of every spatial

point and the force point of a point map, respectively.
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regions that surround the assigned force point) with the shape mask. We
multiply this attention map respectively with the normal map and the stress
map to ensure that the synthesized stress and normal directions surround-
ing this force point should be consistent with the ground-truth values as
much as possible. Here, we design a loss term Lpoint to compute the L1
distance of the generated stress and normal maps compared with their re-
spective ground truths inside the regions Mp, as defined below.

Lpoint = L1(Mp · ỹ, Mp · y) + L1(Mp · ñ, Mp · n). (4.3)

Therefore, our final objective function is formulated as follows:

L = LG,D + λ1Lshape + λ2Lpoint, (4.4)

where we set λ1 = 500 and λ2 = 100 in our experiments.

4.1.1 Sketch-to-Stress Data Rendering

To learn our network for sketch-based structural analysis, we need a con-
siderably large dataset of training data. However, such a dataset is not
available and expensive to acquire since it requires point-wise labeling for
external forces and corresponding stress responses on the sketches. Hence,
we propose to synthesize the sketch-to-stress data from existing 3D reposi-
tories, as shown in Figure 4.2.

We first collect 3D shapes from several public shape repositories, including
ShapeNet [12], AniHead [27], and COSEG [134]. We convert 3D objects
to watertight surfaces with [114] to make it ready for the subsequent 3D
structure analysis. We then orient all 3D shapes uprightly [33], move them
onto the ground plane (for fixing their bottom on the ground plane), and
normalize them to a standard sphere. To normalize and uniform the force
regions of different 3D shapes with diverse structures, for shapes in the
same category, we use the same ratio (0.02% ∼ 0.04%) to define regions
on 3D surfaces near the ground plane as fixed boundary conditions and
the rest as contact regions allowing for any external forces (of 100N mag-
nitude), as illustrated in Figure 4.2. Given each 3D shape, we uniformly
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Fig. 4.2. Illustration for data preparation. The left is a normalized guitar model
(the bottom blue part is the fixed boundary condition and the upper is
the contact regions) and the 3D structure stress result under an external
force at a specific position. The right is the synthetic sketch-to-stress
data. We plot the force location on the 2D sketches and normal maps.

sample force locations on its contact regions and adopt the structural anal-
ysis approach in [126] to simulate the stress responses on the shape’s sur-
face under such forces in opposite-normal directions. Finally, we render
the multi-view sketches, normal maps, force locations, and corresponding
structural stress values S from the simulated 3D stress results. All of the
above renderings are projected in the 256 × 256 spatial resolution. The
synthetic multi-view sketches are extracted from 2.5D normal maps using
the Canny edge detector [11]. We project the 3D stress results with the
azimuth angles of [0, 45, 90] degrees and the elevation angles in (0 ∼ 15)
degrees.

Since the magnitude of the simulated stress values S spans an extremely
large range from ten to ten million, we further normalize the structural
stress values S to a common [0, 1] space in two manners: One is a shape-
grained normalization to compare the fine-grained regional stress among
single shapes; the other is a category-grained normalization to compare
more general-grained shape stress among all the shapes in the same cate-
gory.

Shape-grained Normalization As mentioned in Section 1.2, similar shape
structures tend to have similar weak regions under the same external forces.
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(a) (b) (c) (d) (e)

Fig. 4.3. Pipeline of multi-force aggregation. (a) Input sketch and multi-force
locations in a local region. (b) Normal directions of multiple forces.
(c) Four stress maps corresponding to each of the force locations. (d)
Aggregated stress effect from (c). (e) Ground-truth 3D simulation of
multiple forces.

To highlight such region-wise stress similarity, we normalize the stress val-
ues inside each shape, as formulated below:

Si = Si

max({Si})
, i ∈ a single shape (4.5)

where i is an index for points in the contact regions of a 3D surface, and Si

is a stress value at the i-th point.

Category-grained Normalization To study the general pattern (knowledge)
of how different shape structures respond to the same external forces, we
normalize the stress values of all the shapes in the entire dataset as Equa-
tion 4.6.

Sj = Sj

τ
, s.t. Sj = Sj − u(Sj)

σ(Sj)
, j ∈ all shapes (4.6)

where j is the index of points in the contact regions on 3D surfaces, and
u(·) and σ(·) are the mean and standard variance of the entire stress value
set, respectively. τ = 100 is the upper boundary of the 99% stress value.
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4.1.2 Region-wise Multi-force Aggregation

With our trained network, users can easily explore the structural stress any-
where under a manually-assigned force location by clicking on the sketched
object. To further improve the efficiency of structural analysis on input
sketches, we provide a region-wise analysis method that aggregates the
stress effects of multiple forces in a small region along the same normal
directions. After the user specifies a small region on a sketch (Figure 4.3
(a)), with the predicted normal map, we automatically compute the force
locations that have the same normal direction as the center point of this re-
gion (Figure 4.3 (b)). Then we directly add and average these stress effects
(Figure 4.3 (c)) together following the physical axiom in Section 1.2 and
produce an aggregated stress map (Figure 4.3 (d)). Compared with a 3D
simulated result (Figure 4.3 (e)), although the overall stress effect in our
aggregated stress map is diluted to some extent, it can still approximate the
stress distribution of the 3D simulated result well and can thus be utilized
as guidance for fragile detection.

4.1.3 Structural-Stress Awareness Replacement
and Interpolation

To demonstrate the sensitiveness of our Sketch2Stress to the variations in
sketch structures, such as the significant structure changes (Figure 4.4 (a))
and the more subtle geometry interpolations (Figure 4.4 (b)), we first de-
compose an example chair into parts and then replace the original chair
legs with legs featuring significantly varied geometries and by linearly in-
terpolating the thickness values of the original chair legs, respectively. Note
that we keep the other parts of this example chair unchanged in these two
tasks. As shown in Figure 4.4 (a), the results are in line with our expecta-
tion that our well-trained Sketch2Stress is natural to perceive the structural
soundness among highly changeable structures and identify correspond-
ing fragile regions. Figure 4.4 (b) further demonstrates our Sketch2Stress
algorithm’s capability in perceiving the tendency of thickness increment,
distinguishing the subtle differences among highly similar structures, and
generating the smooth stress distributions for those interpolated structures.
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(b) Chair-leg Interpolation

(a) Chair-leg Replacement

Fig. 4.4. Examples of our Sketch2Stress on Structure Replacement (a) and Geom-
etry Interpolation (b).

This could facilitate a sketch-based structural soundness suggestion task,
where users could easily improve the structural soundness of their created
sketches with our Sketch2Stress tool combined with the replacement and
interpolation operations.

4.1.4 Sketching Interface

To illustrate how our proposed method aids users in analyzing and strength-
ening the structural weakness of their sketched objects under external forces,
we design a simple interface (Figure 4.5) for users to interactively edit
sketches, assign external forces at specific positions to examine the stress
effects, and refine their design.
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Fig. 4.5. Our sketching interface.

Our system has two modes (named the sketching mode and the simulation
mode), and they can be selected through the “Sketch" and “Force” radio
buttons. In the sketching mode, users can load their drawn sketches or
directly create one from scratch in the “Input" region. We also provide
several basic drawing tools for users to edit their drawings, such as clear,
undo, and redo. After finishing one complete sketch, users may change
to the simulation mode. In this mode, users can freely impose external
forces at desired positions by clicking on their drawn sketch and examine
the potential weaknesses through the simulated structural stress map and
the normal map. The auxiliary normal map provides clearer (2.5D) shape
details for designers than the input sketch and the predicted stress map
(most regions are in the same color, deep blue, providing limited shape
details), as observed in the middle and bottom rows in Figure 4.6. During
the structure refinement process, the generated normal map can greatly
help users to iteratively improve their original drawings at a fine-grained
level with its provided shape details. By iteratively using these two modes,
designers can create their desired shapes that are also structurally sound
under certain external forces.
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Fig. 4.6. Result gallery of eleven categories in our synthetic sketch-to-stress
dataset. The top row shows the input sketches and external force lo-
cations (plotted as red dots), while the middle and bottom rows are our
generated normal maps (with predicted force directions at the center
of red boxes) and synthesized stress maps, respectively. Please zoom in
to examine the details of the applied force locations/directions and the
generated structural stress results.

4.2 Experiments

We evaluate our approach on 11 shape categories with a large variety of
geometry and structure, as shown in Figure 4.6. The 3D shapes used for
sketch rendering and force-conditioned structural stress simulation are col-
lected from the existing 3D shape repositories including ShapeNet [12],
COSEG dataset [103], and AniHead dataset [27]. In total, our synthetic
dataset contains over 2.7 million sketch-force-stress data pairs with clear
point-wise force annotations. The dataset spans 11 categories, namely,
chairs (1.7 million), tables (0.7 million), airplanes (0.4 million), vases
(22K), mugs (15K), skateboards (24K), rockets (4K), guitars (9K), fishes
(2.6K), animal heads (78K), and four-leg animals (13K). After data aug-
mentation, our collected data is able to train our neural network with sat-
isfying generation quality. We provide more details of the data distribution
of our sketch-to-stress dataset in Table 4.1.

Implementation Details We implemented our Sketch2Stress with the Py-
Torch framework [89] and used the Xavier initialization [35]. We show
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Category #Shape #Views #Sketches #Force-points #Stress-map
Chair 4,277 3 12,831 1,523,390 1,523,390
Table 3,656 3 7,312 715,566 715,566
Airplane 2,231 3 6,693 403,926 403,926
Vase 184 1 184 22,824 22,824
Mug 164 1 164 15,840 15,840
Skateboard 134 3 402 24,471 24,471
Rocket 49 1 49 4,291 4,291
Guitar 39 2 78 9,186 9,186
Fish 20 1 20 2,640 2,640
Fourleg 42 3 126 13,181 13,181
AniHead 208 3 624 78,528 78,528

Tab. 4.1. Data distribution of our synthesized sketch-to-stress dataset. The
#Shaps and #Views refer to the numbers of 3D shapes and pro-
jection views in different categories, respectively. While #Sketches,
#Force-points, and #Stress-map represent the numbers of rendered
2D sketches, sampled force locations to apply external forces, and the
ground-truth simulated 2D stress maps, respectively.

the parameter structures of the two-branch generator of Sketch2Stress in
the supplemental materials. The entire pipeline of our Sketch2Stress was
trained on an NVIDIA TITAN Xp GPU and optimized by the Adam optimizer
(β1 = 0.9 and β2 = 0.999) with the learning rate of 2e−4. Here we trained
our models to full convergence until the learning rate decayed to relatively
small. Note that training takes 24 ∼ 48 hours on a single GPU with a batch
size of 16 for one category on average. The iteration epochs are set to 10
for those categories with a large number of training samples, namely, Chair,
Table, and Airplane. For the rest categories, we set the training epochs to
100, which is sufficient to achieve the satisfying generation performance in
our experiments. Although it takes a long time to train our Sketch2Stress
during the training stage due to the large size of training samples, the well-
trained two-branch generator of Sketch2Stress only spends around 0.0005
seconds on average to infer a structural stress map for an input sketch un-
der a specified force.

Here we compare our method with two image-to-image baselines, i.e.,
pix2pix [49] and pix2pixHD [132], quantitatively and qualitatively. We
then perform an ablation study to illustrate the improvement provided by
each key component in our method. Finally, we use three user studies to
demonstrate the practicality of our proposed method.
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Fig. 4.7. Qualitative comparison of results generated by different methods of
pix2pix, pix2pixHD, our method, and ground truth.

4.2.1 Qualitative Evaluation

In Figure 4.6, we illustrate a number of stress maps generated from input
sketches under user-specified external forces using our method. It demon-
strates the robustness of our method for input sketches with diverse geom-
etry.

We also provided visual comparisons to pix2pix and pix2pixHD trained on
our sketch-stress data in Figure 4.7. In comparison with the ground truth,
it can be easily seen that our method achieves the best generation quality.
Among the results generated by pix2pixHD, we see obvious high-frequency

66 Chapter 4 Sketching with Structural Stress Awareness



noises. It is because the VGG loss pre-trained on the high-frequency natu-
ral images in pix2pixHD cannot well measure the feature difference of the
low-frequency stress maps. Compared with the chair category, the airplane
has less training data, making the performance of pix2pixHD significantly
worse. pix2pix tends to lose the detail control of local regions during gener-
ation, especially surrounding the force locations. More specifically, pix2pix
usually fails to synthesize correct colors for the higher-stress regions but
only flattens or diffuses these regions with background low-frequency col-
ors, as shown in airplanes, chairs, animal heads, tables, and vases in Figure
4.7. Please find more qualitative results in Appendix C.

4.2.2 Quantitative Evaluation

In the study of sketch-based structural analysis, we focus not only on the
generation quality but also on the pixel-level stress accuracy of generated
results, compared with the ground truth. We adopt four metrics to compre-
hensively evaluate the performance of different methods and compare their
generated stress maps with the corresponding ground truth, namely, mean
absolute error (MAE), F-Measure (FM), earth mover’s distance (EMD), and
Fréchet inception distance (FID). The former two metrics are used for the
pixel-wise stress accuracy measurement, and the latter two are for the im-
age quality evaluation. We report the quantitative evaluation results of the
aforementioned methods on all eleven categories in Table 4.2. Note that
we test the compared methods on the unseen data. For instance, the test
data for Chair and Airplane contains 100 shapes and 60 shapes with 35K

and 18K force samples, respectively.

From Table 4.2, we observe that our method yields overall better image
generation quality while achieving significant improvements in pixel-level
stress accuracy compared to the competitors. Compared to our approach,
pix2pix struggles to accurately predict stress regions surrounding the user-
specified force locations, resulting in compromised image quality (FID and
EMD values) and pixel-wise stress accuracy (MAE and FM values). For
pix2pixHD, its generated stress maps contain too many high-frequency
noises (see the qualitative results in Figure 4.7), leading to its poor per-
formance in metrics associated with image generation quality (EMD and

4.2 Experiments 67



Category Method MAE ↓ EMD ↓ FID ↓ FM ↑

Chair
pix2pix 16.598 0.606 28.346 0.275
pix2pixHD 13.165 1.250 75.852 0.186
Ours 13.601 0.374 15.083 0.412

Airplane
pix2pix 2.128 0.106 7.380 0.438
pix2pixHD 10.070 1.553 184.201 0.061
Ours 2.008 0.079 3.903 0.517

Table
pix2pix 14.359 0.405 24.405 0.329
pix2pixHD 16.626 0.701 55.440 0.204
Ours 14.282 0.321 10.421 0.434

Vase
pix2pix 14.043 0.396 42.908 0.395
pix2pixHD 11.0061 0.493 63.969 0.322
Ours 10.834 0.225 31.647 0.546

Skateboard
pix2pix 5.574 0.253 51.883 0.168
pix2pixHD 15.019 1.731 315.004 0.044
Ours 4.798 0.091 25.563 0.341

Rocket
pix2pix 82.230 6.011 72.085 0.029
pix2pixHD 54.663 4.848 215.600 0.025
Ours 2.136 0.344 54.561 0.414

Guitar
pix2pix 12.452 0.830 34.000 0.242
pix2pixHD 53.627 4.478 166.893 0.038
Ours 6.176 0.188 31.481 0.455

Mug
pix2pix 41.016 1.321 43.275 0.321
pix2pixHD 32.056 2.362 112.037 0.205
Ours 30.156 0.399 26.421 0.541

Fourleg
pix2pix 12.719 0.704 76.126 0.263
pix2pixHD 11.945 0.664 128.312 0.215
Ours 9.121 0.250 46.609 0.498

Fish
pix2pix 117.787 6.891 124.301 0.098
pix2pixHD 14.544 1.804 178.352 0.123
Ours 10.391 0.174 44.758 0.478

AniHead
pix2pix 17.435 0.396 52.854 0.418
pix2pixHD 13.819 0.650 117.058 0.290
Ours 12.150 0.266 27.837 0.506

Tab. 4.2. Quantitative comparison of different methods in the sketch-based struc-
tural stress generation task on the eleven categories.
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Category Method MAE ↓ EMD ↓ FID ↓ FM ↑

Chair

w/o Normal Branch 16.598 0.606 28.346 0.275
w/o Shape Mask 14.432 0.390 14.718 0.402
w/o Point Mask 13.862 0.378 15.092 0.415
Full 13.601 0.374 15.078 0.412

Airplane

w/o Normal Branch 2.128 0.106 7.380 0.438
w/o Shape Mask 2.329 0.126 4.456 0.457
w/o Point Mask 2.161 0.078 4.227 0.514
Full 2.008 0.079 3.903 0.517

Guitar

w/o Normal Branch 12.452 0.830 34.000 0.242
w/o Shape Mask 6.597 0.253 34.762 0.409
w/o Point Mask 6.797 0.192 32.982 0.438
Full 6.176 0.188 31.481 0.455

Tab. 4.3. Quantitative comparison of the ablated methods of our approach on
four categories with complex and diverse shape structures.

Sketch & Force w/o Normal Branch w/o Shape Mask w/o Point Mask Our Full method Ground Truth

Fig. 4.8. Qualitative comparison of our ablated methods.

FID values) and pixel-wise stress accuracy (MAE and FM values). Although
the value of the four metrics fluctuates across different categories due to
the different data amounts of training data, our proposed method remains
consistently superior to the competitors in the sketch-based structure anal-
ysis task.

4.2.3 Ablation Study

To evaluate the effects of the key components (namely, normal branch,
shape mask, and point mask) of our approach, we present both the quan-
titative comparison of the ablation results in Table 4.3 and the qualitative
comparison in Figure 4.8. Note that we report the quantitative compari-
son of our ablated methods on the chair, airplane, and guitar categories,
which were chosen based on their highly varying levels of diversity, com-
plexity, and number of training structures. From Table 4.3, we observe that
removing the normal branch (the supervision on force directions and 2.5D
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shape information), as expected, has a noticeable effect on the four metrics,
leading to a significant drop in image generation quality and pixel-level
accuracy (also see Figure 4.8). Without the shape mask, our approach’s
performance shows a heavy decrease in the four metrics. This mask plays
a critical role in regularizing the shape boundary of the generated images
while also reducing the outlier noises, such as the outlier defects below the
chair seat in Figure 4.8. In terms of the point mask, we observed a slightly
poorer performance on the three categories if this component was removed.
As shown in Figure 4.8, our method tends to lose fine-grained control over
regions surrounding the force point without the point mask.

In summary, our approach relies primarily on normal maps to perceive the
underlying 3D shape structures and infer the surface stress. The shape
mask is the second most important component in supervising the shape
boundaries of generated stress maps. Finally, the point mask plays a vital
role in guaranteeing the region consistency surrounding the force points.
In our approach, the shape mask affects the stress map indirectly by regu-
larizing the shape boundaries in normal maps directly while the point mask
influences the final stress map directly during the generation process.

4.2.4 User Studies

To validate the practicality of our proposed sketch-based analysis tool, we
design three user studies. The first study is the sketch-based weakness
analysis to help users to analyze and summarize weak regions on their
freely drawn sketches. The second study is the sketch-based structural
refinement to help users to refine the structures of given sketches based on
our computed stress maps. The third study examines the usefulness of our
Sketch2Stress tool in assisting designers by providing them with structural
stress awareness during the structure refinement process. Thus, we deploy
a controlled task where designers are asked to refine the same problematic
structures under the specified force conditions. During the trials, they are
requested to refine the structure twice; first, without our Sketch2Stress tool,
relying on their intuitions and experience, and second, with our tool. We
invite 9 volunteers to participate in our user studies. Two of them were
professional interior designers with years of drawing experience, and one
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Fig. 4.9. User study of sketch-based weakness analysis. The top row is the user-
drawn freehand sketches and the interested force points (red dots), the
middle is the computed structure stress maps with our method, and the
bottom is the inferred normal maps. The results demonstrate that our
Sketch2Stress are robust to the common defects (poorly drawn curves,
imperfect straight lines, detached chair back and guitar head, and the
unclosed circular table) existing in input sketches and are able to gener-
ate consistent normal maps and stress effects.

was a new media artist, and the rest were postgraduate students aged 26
to 29 with no professional drawing skills.

Sketch-based Weakness Analysis In this study, we invite the participants
to sketch their interested shapes among our prepared categories freely, with
our interface, and let them figure out the fragile structural weakness by
clicking on the sketched objects. After examining their own sketched ob-
jects, we require users to summarize their analysis process and answer one
question “Which kinds of regions of a shape are the potential or possible
weak regions?”. Their answers to this question are "joint regions, thin struc-
tures, non-straight legs, and single legs with variable thickness". We show-
case representative freehand sketches with the user-assigned forces, the
corresponding stress maps, and the inferred view-dependent 3D structures
in Figure 4.9. Although the viewpoint of the freely sketched airplane in Fig-
ure 4.9 is quite different from training samples (Figure 4.6) in our dataset,
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Refinement DirectionRefinement Direction

Sketch-based Structure Refinement

Fig. 4.10. Two examples from the user study of sketch-based structure refinement.
We display the refinement directions of how users enhance the prob-
lematic structures and detail the intermediate refined sketches along
the arrows of the refinement directions. The stress feedback and addi-
tional normal maps are side-placed with the sketches. Please zoom in
to examine the details.

our Sketch2Stress is still able to infer a faithful view-dependent structure
and a feasible stress map for the input.

Sketch-based Structure Refinement As the chair category exhibits the most
complex shape structures, in this study, we invite all the participants to
refine and enhance two initial chair structures with weak or problematic
regions undertaking higher stress (see the regions with warmer and lighter
colors in Figure 4.10) among the whole dataset. During the refinement pro-
cess, we do not provide any suggestions and ask users to refine the struc-
ture based on the guidance of the computed stress map in our interface. We
illustrate the refinement process of two representative sketch-based struc-
ture refinements from users, as shown in Figure 4.10. We also display the
generated stress maps and normal maps besides the refined sketches at
each time step in Figure 4.10.
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Fig. 4.11. User study of structure refinement with or without our Sketch2Stress
tool. Each triplet contains a structurally problematic sketch under dif-
ferent force configurations (red dots on sketches), and the user-refined
results without and with our tool, respectively. The corresponding
stress maps are provided under the refined sketches.

Through the previous two studies, we show that both novice users and de-
signers can easily identify the weak regions that sustain higher stress under
the specified external forces with our proposed method. Our method also
provides an effective way for users to interactively enhance their created
shape structures by step-by-step refinement with our generated stress maps.
However, people might be quite interested in how useful our Sketch2Stress
tool is for these professional designers with years of design experience. So
we further deploy the following controlled trials to answer this question.

Controlled trials: Structure Refinement with or without Sketch2Stress In
this study, we invited two professional designers and one artist among the
previous study participants and asked them to refine problematic sketch
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structures as much as possible. In the beginning, we showed the partic-
ipants both a problematic sketch and its stress map which indicates the
weak regions of these fragile structures (see "problematic structures" in
each triplet in Figure 4.11).

In conventional refinement tasks, designers are commonly requested to re-
spect the original geometry (like the thickness for simplicity) and structure
as faithfully as possible. Our sketch-based structure refinement task also
follows the same rule. However, in our scenario, drastically changing the
original structure by adding extra structures also works for improving the
structural soundness, so we further customize and define our own require-
ments for different types of refinements as shown in Figure 4.11: (a) Ge-
ometry refinement: participants are only allowed to adjust the thickness of
the fragile parts to improve the problematic structure without changing the
original structures. (b) Structure refinement: participants are only allowed
to change structures but not modify the thickness of the original structures.
(c) Free refinement: participants are allowed to edit both the geometry and
the entire structures.

In the first trial, guided by the requirements stated previously, the partici-
pants were asked to heal these weak regions with their own learned knowl-
edge, design experience, and intuitions but without our Sketch2Stress. Al-
though three participants used our Sketch2Stress tool in the previous two
user studies and learned where might be the potential regions and how
the problematic structures were iteratively improved with our tool, we are
still interested to know how well the participants could use the learned
knowledge and fix the novel problematic cases by themselves. During
this process, the participants were allowed to edit the problematic sketch
structures multiple times following the different refinement requirements
until they were satisfied. Note that we did not update the stress maps
during this refinement process. The final refined sketches and their cor-
responding stress maps of the first trial can be seen in Figure 4.11 ("w/o
Sketch2Stress" in each triplet). In the second trial, we allowed the partici-
pants to refine the problematic structure obeying three refinement require-
ments with our Sketch2Stress tool. During this process, we provided an
instant response in the form of a stress map after each editing operation.
The final sketch refinements and their corresponding stress maps from the
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second trial can be seen in Figure 4.11 ("w/ Sketch2Stress"). Through the
controlled trials, we found that relying solely on designers’ experience with-
out our Sketch2Stress tool could only mildly relieve the weak regions’ stress
or sometimes worsen the situation. For example, in geometry refinement
(Figure 4.11 (a)), the designers usually attempted to thicken these thin legs
as much as possible. However, this is not the optimal way to strengthen
problematic regions meanwhile not modifying the original geometry too
much. While our Sketch2Stress tool can help the designers and the artist
to iteratively adjust and obtain a more suitable, even optimal thickness by
giving them instant stress feedback after each modification. Also, as illus-
trated in Figure 4.11 (b) and (c), our Sketch2Stress informs the designers
and the artist where (potential fragile regions), which auxiliary strategies
(thickening, adding extra structures), and how effective their modifications
by showing them the instant stress responses after their edition operations.
Using Sketch2Stress, all the participants successfully refined the problem-
atic sketch structures to better versions. The practicality and usefulness of
our Sketch2Stress tool received high appreciation from the designers and
artist. All three participants spoke highly of our designed tool for helping
them quickly locate the weak regions and inform them of the vivid and
instant stress responses after every editing operation. Before our user stud-
ies, they did not have much experience performing structural analysis and
refinement in the sketching phase.

4.2.5 Structural Analysis on Real Product
Sketches

As product designers extensively use sketches in their creation and com-
munication, to demonstrate the powerful feature of our method in aid-
ing sketch-based structural analysis, we further apply our Sketch2Stress
method to real product design sketches in OpenSketch [38]. We first lever-
age the 3D objects in OpenSketch to render the 2D sketch-to-stress data, (as
described in Subsection 4.1.1) and then train our network on the projected
synthetic data. As shown in Figure 4.12, with clean sketches and the user-
assigned forces, our method is able to generate feasible and high-quality
structural stress maps for product sketches. With the aid of our method,
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Concept Sketch Presentation Sketch  Sketch and Force Generated Stress and Normal Ground-truth of 3D simulation

Fig. 4.12. Our Sketch2Stress method applied to the OpenSketch dataset. The
concept and presentation sketches of the bump, shampoo bottle, and
potato chip (in the first, second, and third rows) are from "Profes-
sional1" while the bottom two rows of the tube and the house are from
"Professional5" and "Professional6" in the OpenSketch dataset. Please
zoom in to examine the details.

designers will have more opportunities to check and refine the structural
weaknesses of their ideal products in advance at the sketching stage, fol-
lowing the same operations in Subsection 4.2.4. Furthermore, with our
method, designers will have a larger design space by incorporating exter-
nal physical factors in the form of different force configurations.

4.3 Discussion

We have introduced the novel problem of sketch-based structural analysis,
where we constrain the external forces to variables with the same mag-
nitude but different locations and opposite-normal directions. We further
present a two-branch generator to synthesize feasible structural stress maps
by considering the sketches’ geometry and force variables simultaneously.
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(b) Too strange structure

(a) Too complicated structure

(c) Repeated and overtraced strokes

(d) Exaggerated parts

Fig. 4.13. Fail cases. Our inference model might fail when the sketched structures
are too complex or too strange from the observed structures.

We find that usually, the long, thin, tilt, and joint regions tend to suffer
higher stress, and shapes with such regions are weaker than those shapes
without them.

While the work we proposed provides an efficient approach for sketch-
based structural analysis, our method has some limitations. First, our
method cannot synthesize the stress effects of forces that are not in opposite-
normal directions. Second, the force magnitude in our problem is set to a
fixed value, which makes it challenging to analyze the stress effects of exter-
nal forces with dynamic values. These two limitations are inherited from
the method [126] we adopted for synthesizing the training data. Hence,
further advances in new structural stress analysis solutions on 3D models
could also boost our approach. Third, only having one sketch provides
limited information to indicate material properties. Fourth, our approach
cannot take as input multi-forces at different directions since the combina-
tion of multiple forces requires an extra module to process carefully, not
simply recording the mapping between input multiple forces and the out-
put corresponding structural stress effect. In the future, we aim to further
explore the proper representations and definitions for materials and exter-
nal multiple forces in the generative process. Fifth, due to the constraints
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of learning-based approaches, our well-trained Sketch2stress also cannot
jump out of the bound of the empirical distribution of the observed data
and might fail to infer reasonable stress maps and faithful underlying struc-
tures for input sketches with too complicated and strange structures, re-
peated and over-traced strokes, or exaggerated part geometries. As shown
in Figure 4.13 (a) and (b), some defects can be observed in the generated
normal maps and synthesized structural stress maps of the double-layer
table and "X"-leg chair. Also, the over-traced strokes and the exaggerated
parts will lead to failures with our approach, i.e., the holes and the mis-
matched mug-handle in (Figure 4.13 (c) and (d)). For the small flaws in
generated stress maps and normal maps in Figure 4.13 (c) and (d), they
could be fixed by refining the normal map (similar to [118]). Lastly, in our
user studies, users needed to draw their refinements on our Sketch2Stress
interface repeatedly in a trial-and-error to obtain the final sound structures.
Ideally, a more intuitive interface will further guide users to fix the prob-
lematic parts better, such as by providing a slider for users to adjust the
thickness.

78 Chapter 4 Sketching with Structural Stress Awareness



Learning Local Sketch
Descriptors for
Multi-view
Correspondence

5

I n previous chapters, we present two approaches to beautify both the
part geometry and entire structure of the sketch of a man-made object

(Chapter 3) and analyze the structural stress effects of a designed sketch
prototype under the user-specified external forces (Chapter 4). The above
two approaches mainly focus on sketched objects’ shape and structure anal-
ysis from a single view. As discussed in Section 1.3, there is an inherent
ambiguity in single-view sketches due to the occlusion that makes them un-
able to convey the full overviews of the underlying 3D shapes. To faithfully
represent the user’s desired 3D shapes in mind, in this chapter, we explore
the multi-view sketches and study the problem of inferring the semantic
correspondence of multi-view sketches. In this chapter, we introduce the
methodology of our local sketch descriptors aimed for inferring multi-view
correspondence, SketchDesc, in Section 3.1. Quantitative and qualitative
evaluations are showed in Section 3.2. We present two applications based
on SketchDesc in Section 5.3, summarize this method and discuss the limi-
tations in Section 5.4.

5.1 Methodology

Terminology In this chapter, we differentiate between the word “points”
for shapes, sketch images, and sketch lines as follows. We refer to the
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Positive  Anchor

B CA

Negative

Fig. 5.1. Illustration of our multi-scale patch-based representation. Given a
480×480 sketch input and a pixel of interest, we use multi-scale (32×32,
64×64, 128×128, and 256×256) patches to capture the neighborhood
of the pixel. The positive, anchor and negative patches are formed as a
training triplet.

points on the surface of a 3D shape as vertices, the points on a 2D sketch
image as pixels, and the points exactly on the sketch lines as points.

For input sketches represented as rasterized images, a key problem to se-
mantic correspondence learning is to measure the difference between a pair
of pixels in a semantic way. This is essentially a metric function learning
problem where a pair of corresponding pixels has a smaller distance than
a pair of non-corresponding pixels in the metric space. Formally, it can be
expressed as follows:

Dm⟨pc1, pc2⟩ < Dm⟨pc1, p̃nc⟩, (5.1)

where Dm⟨·, ·⟩ is a metric function, and pc1 and pc2 represent corresponding
pixels from different sketches (e.g., the pair of anchor and positive pixels
in Figure 5.1) while pc1 and p̃nc are a pair of non-corresponding pixels (e.g.,
the pair of anchor and negative pixels in Figure 5.1).

We follow [122] to build the metric function Dm by learning a sketch de-
scriptor (SketchDesc) with a triplet loss function. Basically we optimize
the loss function in Equation 5.2, which minimizes the distance between
pairs of corresponding pixels and maximizes the distance between pairs of
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Fig. 5.2. Illustration of synthesized multi-view sketches (of size 480 × 480), with
corresponding pixels (in green) projected from the same vertex (in red)
on a 3D shape.

non-corresponding pixels. Since sketch images are rather sparse, we adopt
a multi-scale patch-based representation, that is, multi-scale patches cen-
tered at a pixel of interest in a sketch. We resort to deep CNNs, which
own the superior capability of learning discriminative visual features from
sufficient training data. As illustrated in Figure 5.4, our designed network
(Section 5.1.2) takes a multi-scale patch as input and outputs a 128-D dis-
tinctive descriptor.

To train the network, we first synthesize line drawings of a 3D shape from
different viewpoints as multi-view sketches. We then generate the ground-
truth correspondences by first uniformly sampling points on the 3D shape
and then projecting them to the corresponding multiple views. We will
discuss the process of data preparation in more detail in the next section.

5.1.1 Data Preparation

Multi-view Sketches with Ground-truth Correspondences We follow a sim-
ilar strategy in [65, 139, 115] to synthesize sketches from 3D shapes.
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Specifically, we first render a 3D shape with the aligned upright orienta-
tion to a normal map under a specific viewpoint, and then extract an edge
map from the normal map using Canny edge detection. We adopt this ap-
proach instead of the commonly used suggestive contours [23], because
the latter is suited for high-quality 3D meshes and cannot generate satisfac-
tory contours from poorly-triangulated meshes (e.g., airplanes and rifles
in the Structure Recovery dataset [101]). Hidden lines of the edge detec-
tion results are removed. In our implementation, each sketch is resized to a
480×480 image. As mentioned in [30], most humans are not faithful artists
and create sketches in a casual and random way. Unlike [45, 81] using lim-
ited views, to better accommodate the shape and viewpoint variations in
freehand sketches, we sample viewpoints on the upper unit viewing hemi-
sphere (in an elevation angle of 15∼45 degrees) at every 15 or 30 degrees
in the azimuth angle for rendering each 3D model.

By projecting each vertex to the corresponding views, we naturally con-
struct ground-truth correspondences (with the projections from the same
vertices) among synthesized multi-view sketches, as illustrated in Figure
5.2. We do not consider hidden vertex projections (invisible under depth
testing). If the projections of a vertex are visible only in less than two dif-
ferent views, this vertex is not considered in ground-truth correspondences.
Following this strategy, we can generate from 28K to 60K ground-truth
pairwise correspondences from each 3D shape. Our synthesized correspon-
dence dataset for training and testing are derived from 6,852 multi-view
sketches distributed over 18 shape categories of existing shape datasets [101,
15, 146] (Section 5.2).

Multi-scale Patch Representation We represent each visible projection of
a 3D vertex on sketch images with a patch-based representation centered
at the corresponding pixel to capture the distinctive neighboring structures
(Figure 5.1). To better handle the sparsity and the lack of texture infor-
mation in sketches, we adopt a multi-scale strategy. Given a 480 × 480
sketch image, we employ a four-scale representation (i.e., 32 × 32, 64 × 64,
128 × 128, and 256 × 256) for a pixel, as illustrated in Figures 5.1 and 5.3.

The multi-scale patch-based representation allows us to sample ground-
truth correspondences inside sketched objects, and not necessarily on sketch
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Fig. 5.3. An illustration of two sampling mechanisms (Left: OR-sampling; Right:
AND-sampling) for training data. OR-sampling generates more challeng-
ing data (blue) than AND sampling (red).

lines. This significantly increases the number of ground-truth correspon-
dences for training. However, we do require valid information existing in a
multi-scale patch representation. We have tried two sampling mechanisms:
1) OR-sampling: a multi-scale patch is valid if the patch is non-empty at any
of the scales (Figure 5.3 left);
2) AND-sampling: a multi-scale is valid if the patch is non-empty at every
scale (Figure 5.3 right).
The former generates valid multi-scale patches at almost every visible ver-
tex projection, since the patch at scale 256×256 is often non-empty given its
relatively large scale. In contrast, the AND-sampling generates valid multi-
scale patches only near to sketch lines. We will compare the performance
of these two sampling mechanisms in Section 5.2.

Before feeding these patches into our multi-branch network, we rescale all
the patches to 32 × 32 (i.e., the smallest scale) by bilinear interpolation
(Figure 5.4). Below we describe our network architecture in more detail.

5.1.2 Network Architecture

We design a network architecture to learn local descriptors for measuring
the semantic distance between a pair of pixels in multi-view sketches. As
illustrated in Figure 5.4, our network has four branches to process the set
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Fig. 5.4. The architecture of SketchDesc-Net. Our input is a four-scale patch pyra-
mid (32×32, 64×64, 128×128, 256×256) centered at a pixel of interest
on a sketch, with each scale rescaled to 32×32. Given the multi-scale
patches, we design a multi-branch framework with shared weights to
take as input these rescaled patches. The dashed lines represent the
data flow from an input patch to an output descriptor. For the kernel
size and stride in our network, we adopt the same settings as [122]. Fi-
nally, the output as a 128-D descriptor embeds features from the four
scales by concatenation and full connection operations.

of four scaled input patches. The four branches share the same architec-
ture and weights in the whole learning process. Each branch receives a 32
× 32 patch and outputs a 128 × 1 (i.e., 128-D) feature vector which is
then further fused at the concatenation layer and the final fully-connected
layer. Note that due to the shared weights among the branches, the multi-
branch structure does not increase the number of parameters. Our network
produces a 128-D descriptor as output, which will be later used for sketch
correspondence and pixel-wise retrieval in Section 5.2.

5.1.3 Objective Function

To train our network, we employ the random sampling strategy of [122] to
assemble the triplets (Figure 5.1) in a training batch. We define the output
descriptors of a triplet as (fa, fp, fn), where fa is the descriptor vector of an
anchor pixel in one sketch, and fp and fn represent the descriptors of the
corresponding pixel (corresponding to the same vertex in a 3D shape as the
anchor pixel) and a non-corresponding pixel. The non-corresponding pixel
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Fig. 5.5. Sketch correspondence in the OpenSketch dataset computed with
SketchDesc descriptors. Note that even with limited ground-truth cor-
respondence in the training set of OpenSketch, SketchDesc can still es-
tablish a robust correspondence for the multi-view sketches.

can be selected from either the same sketch or in the other views. With the
descriptor triplets, we adopt the triplet loss [99] to train the network. The
triplet loss, given in Equation 5.2, aims to pull closer the distance between
a pair of corresponding pixels (fa, fp) and push away the distance between
a pair of non-corresponding pixels (fa, fn) in the metric space.

Ltriplet = 1
n

Σn
i=1 max (0, d (fai

, fpi
) − d (fai

, fni
) + m) , (5.2)

where n is the number of triplets in a training batch, (fai
, fpi

, fni
) denotes

the i-th triplet, d (·, ·) measures the Euclidean distance given two descrip-
tors, and the margin m is set to 1.0 in our experiments.

5.2 Experiments

We conducted extensive experiments on two sketch datasets: our synthe-
sized multi-view sketch dataset and the OpenSketch dataset[38]. For our
synthesized dataset (Figure 5.9), we utilize three existing 3D shape repos-
itories: the Structure-Recovery database [101], Princeton Segmentation
Benchmark (PSB) [15], and ShapeNet [146]. Table 5.1 shows some in-
formation about the three shape repositories, including the selected cate-
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Tab. 5.1. Object categories and the number of shapes and views used in our
dataset.

gories, the number of 3D shapes per category, and the number of views
used per category. The shapes in each category were manually selected
based on the criterion of increasing shape diversity and decreasing the re-
dundant and repeated shapes. For the OpenSketch dataset, it has around
400 sketches of 12 man-made objects, which were drawn by professional
product designers. Different from the synthesized sketches, the OpenS-
ketch data contains abundant annotations of additional shadings, skeletons
and auxiliary lines (shown in Figure 1.8 (bottom) and Figure 5.5).

In addition to the hand-drawn sketches in OpenSketch, we also performed
evaluation on a set of more freely-drawn sketches. Several participants
were invited to create freehand sketches on a touchscreen, after observ-
ing a 3D shape for a fixed amount of time. Each participant was given
three salient views of each shape that ordinary users would be familiar
with. Figure 1.8 (two middle rows) shows some representative results of
sketch correspondence (i.e., chair, bicycle, and fourleg). Note that to avoid
visual clutter, for each freehand sketch pair, we randomly selected 20∼50
pairs of matched correspondences computed by nearest neighbor search
with SketchDesc (see Section 5.2.1). In the Appendix D, we provide more
results of the computed correspondences among hand-drawn multi-view
sketches.

Implementation Details We implemented our network with the PyTorch
[89] framework and used the Xavier initialization [35]. We train our net-
work for each object category with a data splitting ratio of 8 : 1 : 1 (training
: validation : testing). All multi-view sketches are rendered to the size of
480 × 480. The batch size is set to 64. Our network is trained on an NVIDIA
RTX 2080Ti GPU and optimized by the Adam [55] optimizer (β1 = 0.9 and
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Fig. 5.6. For a given pixel inside a sketched object under View 1, we find a corre-
sponding point in the other sketch under View 2 by computing a distance
map through our learned descriptor.

β2 = 0.999) with a learning rate of 1e−3. The number of iteration epochs in
our experiments is set to 100.

5.2.1 Sketch Correspondence

In this task, we validate the performance of the learned descriptors in find-
ing corresponding pixels in pairs of multi-view sketches in the testing set.
Given a pair of testing sketches, for each pixel in one sketch, we compute its
distances to all pixels in the other sketch (see distance visualization in Fig-
ure 5.6). We consider it as a successful matching if the pixel with the short-
est distance is no further than 16 pixels (half of the smallest patch scale)
away from the ground-truth pixel. Note that not all pixels in a sketch image
have ground-truth correspondences (only among those projected).

To clarify the dissimilarity between the training set and the testing set, we
designed a retrieval-based baseline (illustrated in Figure 5.7) in the task of
sketch correspondence.

For a given pixel on one sketch in View 1 of a testing pair, we perform
the pixel matching operation (by nearest neighbor search) to get the most
similar pixel among all the training sketches under View 1. Note that the

5.2 Experiments 87



Testing sketch 
in View 1

Training set
in View 1

Training set 
in View 2

Testing sketch 
in View 2

ground-truthpixel matching 

pixel matching 

Fig. 5.7. The pipeline of a retrieval-based baseline, which directly utilizes the
ground-truth correspondence in the training set. For illustration, we
show the top-3 sketches retrieved from the training set by pixel match-
ing.

pixel matching operation takes as input the patches (32×32) centered on
the pixels. With the matched pixel, we utilize the ground-truth cross-view
correspondence in the training data to find its corresponding pixel in View
2 (i.e., the same view as the other sketch in the testing sketch pair). Finally,
we perform the pixel matching again to find the most similar pixel on the
testing sketch in View 2. Note that we employ the conventional image
matching method [22] for the pixel matching operation.

The performance of our approach and other competing methods on sev-
eral representative categories is reported in Table 5.2. We report the aver-
aged success rate as the correspondence accuracy. We observe that our net-
work outperforms its learning-based and retrieval-based competitors. Due
to the lack of texture in sketch patches, the frameworks designed for im-
age patches (i.e., L2-Net, HardNet, and SOSNet) cannot learn effective
descriptors to match the corresponding pixels in multi-view sketches. Our
descriptor also surpasses those based on LeNet and AlexNet-VP. Figure 5.8
gives some qualitative comparisons between different approaches. Since
32 × 32 patches are required to be non-empty, the testing pixels are near
sketch lines. We observe that the descriptors learned by LeNet, HardNet,
L2-Net, and SOSNet are less discriminative, and are thus not effective in
finding corresponding pixels among multi-view sketches. AlexNet-VP uses
the max-pooling layer, making it difficult to focus on local details for ro-
bust descriptors, as discussed in [78]. As a consequence, AlexNet-VP pro-
duces more ambiguous distance maps (e.g., the chair example in Figure
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Fig. 5.8. Sketch correspondence results by computing the distance maps with dif-
ferent approaches. Correct and wrong matching results are marked as
green and red boxes, respectively.
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base. LeNet L2Net HardNet SOSNet AlexNet-VP SketchDesc

Structure-
Recovery

Airplane 0.14 0.18 0.24 0.21 0.19 0.36 0.54
Bicycle 0.28 0.38 0.39 0.42 0.40 0.66 0.71
Chair 0.27 0.40 0.40 0.39 0.39 0.51 0.56

Fourleg 0.27 0.29 0.34 0.32 0.28 0.52 0.66
Human 0.21 0.28 0.38 0.40 0.35 0.64 0.73

Rifle 0.27 0.43 0.52 0.53 0.50 0.67 0.76
avg_acc 0.24 0.33 0.38 0.38 0.35 0.56 0.66

PSB

Airplane 0.07 0.18 0.23 0.13 0.10 0.52 0.72
Bust 0.20 0.33 0.22 0.23 0.20 0.31 0.45
Chair 0.22 0.29 0.27 0.24 0.26 0.44 0.60
Cup 0.26 0.22 0.25 0.19 0.22 0.35 0.57
Fish 0.29 0.30 0.36 0.35 0.31 0.63 0.64

Human 0.20 0.35 0.35 0.38 0.34 0.54 0.79
Octopus 0.08 0.10 0.11 0.09 0.07 0.24 0.28

Plier 0.09 0.10 0.09 0.06 0.14 0.57 0.73
avg_acc 0.18 0.23 0.24 0.21 0.21 0.45 0.62

ShapeNet

Airplane 0.21 0.39 0.44 0.40 0.35 0.67 0.69
Bag 0.11 0.17 0.14 0.15 0.14 0.31 0.38
Cap 0.17 0.21 0.25 0.26 0.22 0.55 0.75
Car 0.13 0.17 0.21 0.21 0.21 0.55 0.73

Chair 0.16 0.19 0.20 0.18 0.19 0.42 0.47
Earphone 0.12 0.15 0.18 0.16 0.14 0.25 0.42

Mug 0.21 0.19 0.20 0.17 0.17 0.32 0.39
Pistol 0.23 0.30 0.34 0.33 0.34 0.66 0.71

avg_acc 0.17 0.22 0.25 0.23 0.22 0.47 0.57

Tab. 5.2. Sketch correspondence accuracy (i.e., the average success rate) for the
different methods. The best results in each object category are in bold-
face.

5.8) compared to our method. The retrieval-based baseline employs the
ground-truth from the training set, but it still fails to build reliable corre-
spondences for multi-view sketches. In fact, the retrieval-based baseline
has the worst performance. It is mainly because of the incapability of
the image-based descriptor [22] on dealing with the highly similar local
patches with limited textures in multi-view sketches, and also because of
the large disparity between multi-view sketches in the training set and test-
ing set (Figure 5.9). In addition, it is challenging to use this baseline in
practice with hand-drawn sketches, due to the required view prior and its
large running time to infer the correspondences for a pair of multi-view
sketches (3.15 minutes vs 8.76 seconds by our method on average).

Figure 1.8 shows successful matchings randomly selected from all success-
ful matchings on the synthesized multi-view sketches (top) and the hand-
drawn sketches (middle). In Figures 1.8 (bottom) and 5.5, we also show
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Fig. 5.9. The pairs of a testing sketch (left) and its most similar training sketch
(right) retrieved from the training set under the same view, utilizing the
image matching method [22].

that SketchDesc can be further utilized to infer some correspondences of
multi-view sketches in the OpenSektch dataset. Due to the limited ground-
truth correspondence in OpenSketch, we show all the successful matchings.
More correspondence results (successful and unsuccessful matchings) of
multi-view sketches can be found in the Appendix D.

5.2.2 Multi-view Pixel-wise Retrieval

We further design a multi-view corresponding pixel retrieval task. Given
multi-view sketches synthesized from multiple shapes, we uniformly sam-
ple a set of pixels (1000∼1600 pixels) on one sketch and search in the
other sketches for the corresponding pixels which are from the same shape
(in different views). We use the descriptors computed from the compared
networks as queries and adopt the Mean Average Precision (MAP) [4] to
measure the retrieval performance. Let y = (y1, . . . , yn) ∈ {−1, +1}n be
the labels of a ranked list of pixels returned for a pixel query, with -1 and
+1 indicating negative and positive match, respectively. Then the precision
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LeNet L2-Net HardNet SOSNet AlexNet-VP SketchDesc

Structure-
Recovery

Airplane 0.33 0.42 0.45 0.40 0.45 0.68
Bicycle 0.37 0.40 0.44 0.39 0.60 0.84
Chair 0.39 0.45 0.42 0.42 0.70 0.82

Fourleg 0.33 0.45 0.41 0.30 0.75 0.82
Human 0.20 0.44 0.40 0.27 0.74 0.92

Rifle 0.56 0.56 0.57 0.54 0.76 0.83
avg_map 0.36 0.45 0.45 0.39 0.67 0.82

PSB

Airplane 0.26 0.26 0.11 0.11 0.42 0.68
Bust 0.01 0.29 0.29 0.26 0.51 0.64
Chair 0.33 0.48 0.42 0.46 0.75 0.86
Cup 0.05 0.08 0.04 0.06 0.22 0.50
Fish 0.19 0.28 0.23 0.21 0.58 0.73

Human 0.13 0.53 0.52 0.46 0.79 0.93
Hand 0.08 0.37 0.37 0.28 0.52 0.64

Octopus 0.38 0.29 0.29 0.46 0.67 0.71
Plier 0.18 0.36 0.21 0.18 0.79 0.86

avg_map 0.18 0.33 0.28 0.27 0.58 0.73

ShapeNet

Airplane 0.14 0.22 0.15 0.09 0.37 0.55
Bag 0.17 0.20 0.15 0.14 0.53 0.69
Cap 0.16 0.24 0.19 0.17 0.59 0.71
Car 0.20 0.19 0.22 0.22 0.56 0.67

Chair 0.11 0.15 0.14 0.140 0.51 0.67
Earphone 0.25 0.30 0.25 0.20 0.49 0.83

Mug 0.05 0.06 0.06 0.08 0.28 0.34
Pistol 0.29 0.35 0.35 0.36 0.69 0.82

avg_map 0.17 0.21 0.19 0.17 0.50 0.66

Tab. 5.3. Pixel-wise retrieval performance for the different methods.
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Methods
Structure-Recovery&ShapeNet

PSB
PSB&ShapeNet

Structure-Recovery
Structure-Recovery&PSB

ShapeNet
LeNet 0.27 0.35 0.21
L2-Net 0.23 0.40 0.26
HardNet 0.24 0.39 0.27
SOSNet 0.24 0.40 0.26
AlexNet-VP 0.26 0.39 0.26
SketchDesc 0.55 0.49 0.54

Tab. 5.4. Cross-dataset (chair) performance of different methods in the sketch
correspondence task. The training sets are labeled with underlines.

at rank i is given by1 Pi(y) = ∑i
k=1[yk]+/

∑i
k=1 |yk| and the average preci-

sion (AP) is given by AP (y) = ∑
k:yk=+1 Pk(y)/ ∑N

k=1[yk]+. Finally, given Nq

as the number of total query pixels, the mean average precision (MAP) is
computed by MAP = ∑Nq

y=1 APy/Nq. Experiments are performed category-
wise in Structure-Recovery, PSB, and ShapeNet. To further report the per-
formance on a dataset, we adopt avg_map which averages the MAP over
all the tested categories.

Table 5.3 shows the results given by the compared methods. SketchDesc ac-
hieves the best performance among all the learned descriptors. Our learned
descriptor surpasses the image-based descriptors of L2-Net, HardNet, and
SOSNet by a large margin. For AlexNet-VP, it achieves a closer but still
lower performance compared with our method.

5.2.3 Cross-dataset Validation

Considering the limited data in the testing set, we further demonstrate the
generalization ability of SketchDesc with a cross-dataset validation.

For the three shape datasets (Structure-Recovery, PSB, and ShapeNet), we
take two of them as the training set and the remaining one as the testing
set. To reduce the effects of imbalanced data distribution, we report the
performance on a more balanced and overlapping category (Chair), which
has 27, 20, and 23 shapes in each of the three datasets respectively (Table
5.1). We report the performance of the sketch correspondence task and the
multi-view pixel-wise retrieval task in Table 5.4 and Table 5.5 respectively.

1Here [z]+ = max{0, z}.
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Methods
Structure-Recovery&ShapeNet

PSB
PSB&ShapeNet

Structure-Recovery
Structure-Recovery&PSB

ShapeNet
LeNet 0.07 0.01 0.04
L2-Net 0.16 0.35 0.13
HardNet 0.19 0.32 0.14
SOSNet 0.17 0.35 0.15
AlexNet-VP 0.54 0.40 0.24
SketchDesc 0.73 0.64 0.54

Tab. 5.5. Cross-dataset (chair) performance of different methods in the pixel-
wise retrieval task. The training sets are labeled with underlines.

We observe that SketchDesc still shows an overwhelming superiority over
its competitors. There is only a slight drop (0.02 on average) in the cross-
dataset performance of the sketch correspondence task, compared to Table
5.2. However, the cross-dataset performance of the pixel-wise retrieval task
shows a noticeable degradation (0.15 on average), compared to Table 5.3.
This is mainly because that the pixel-wise retrieval task has a much larger
search space (multi-view sketches of multiple shapes) than the sketch cor-
respondence task (paired multi-view sketches of a single shape), and tends
to lead to more mismatches due to ambiguity. In general, the robustness
and effectiveness of SketchDesc are further verified by the large and unseen
testing data.

5.2.4 View Disparity

To further show the robustness of different learned descriptors against the
degree of view disparity, given the same input testing pixels in one sketch,
we visualize how the quality of correspondence inference changes with the
increasing view disparity. As shown in Figure 5.10, SketchDesc shows a
more stable performance of correspondence inference than the competi-
tors. Please note that the ground-truth corresponding pixels might become
invisible in certain views, and all the learned descriptors could not distin-
guish the visibility of corresponding pixels. Nevertheless, SketchDesc still
produces the most reasonable results.
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Fig. 5.10. Performance of different methods with increasing view disparity (30,
60, 90, 150, and 180 degrees). Given some anchor pixels on the
sketched object at top-left, we show the corresponding pixels computed
by the different methods. The ground-truth correspondences are la-
beled with green boxes.

5.2.5 Ablation Study

In this subsection, we validate the effectiveness of the key components
(multi-scale strategy, shared weights structure, training data generation
strategy) of our method with ablation studies.

Multi-scale Strategy. The designed multi-scale patch-based representation
(32 × 32, 64 × 64, 128 × 128, 256 × 256) plays an essential role in our method.
We first show how different scales can influence the performance of the
learned descriptors. We test our network with increasingly more scales and
evaluate its performance on the pixel-wise retrieval task. We employ the av-
erage MAP (Mean Average Precision) metric over the whole dataset. Quan-
titative results are shown in Table 5.6. We can see that the features from
the larger scales are more discriminative than the features from smaller
scales by ablating one of the multiple scales in Table 5.6 (rows 5 - 8). As
we remove the larger scale, the poorer performance of SketchDesc is wit-
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Fig. 5.11. Visualization of different multi-scale choices. The distance maps show
the distances from the highlighted point in the left sketch to all the
pixels in the other sketch.

nessed on all three datasets. Multiple scales are better than a single scale.
A representative visual comparison is shown in Figure 5.11. It is found
that as larger scales are involved, the ambiguous regions (bright yellow re-
gions) on the feet, legs and backs of the camel are gradually rejected. In
other words, with the multi-scale patches as inputs, our network can enjoy
not only a more precise local perception but also a global perspective.

Shared Weights. In our method, the multi-scale patches are processed by
a shared-weight scheme. To verify its effectiveness, we perform a com-
parison on the pixel-wise retrieval task with an unshared-weight network
structure. The comparison results are reported in Table 5.7. It is found that
the shared-weight structure in our network achieves higher accuracy. The
improvement is even more significant on PSB. The results confirm a similar
design choice of shared-weight structure used in existing studies like [45]
and [81].
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Different scales Structure-Recovery PSB ShapeNet
322 0.47 0.31 0.20
642 0.64 0.44 0.45
1282 0.75 0.65 0.61
2562 0.76 0.66 0.62
642 + 1282 + 2562 0.81 0.69 0.66
322 + 1282 + 2562 0.81 0.67 0.65
322 + 642 + 2562 0.79 0.68 0.64
322 + 642 + 1282 0.77 0.67 0.61
322 + 642 0.70 0.57 0.48
322 + 642 + 1282 0.77 0.67 0.61
322 + 642 + 1282 + 2562 0.82 0.73 0.66

Tab. 5.6. The performance of using different scale combinations as inputs to
SketchDesc-Net in the pixel-wise retrieval task.

Structure-Recovery PSB ShapeNet
W/o shared weights 0.80 0.65 0.63
W/ shared weights 0.82 0.73 0.66

Tab. 5.7. The performance of our method with or without shared-weights.

Training Data Generation. We evaluate the performance of two patch
sampling mechanisms on the task of pixel-wise retrieval: OR-sampling
and AND-sampling (Section 5.1.1). It can be found from Table 5.8 that
OR-sampling achieves a significantly better performance. This is because
the OR-sampling leads to a significantly larger dataset for training our net-
work.

Sampling Mechanism Structure-Recovery PSB ShapeNet
AND-sampling 0.79 0.68 0.59
OR-sampling 0.82 0.73 0.66

Tab. 5.8. The performance of two sampling mechanisms for data preparation on
the task of multi-view pixel-wise retrieval. Note that different sampling
mechanisms are only used to generate the training data.
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Fig. 5.12. Sketch segmentation transfer. The top row are the inputs: one seg-
mented sketch and several unlabeled sketches. The bottom row are the
outputs: sketches with point-wise labels after graph-cut postprocessing.
With SketchDesc, we can transfer the labels among multi-view sketches
with the computed correspondence.

5.3 Applications

5.3.1 Sketch Segmentation Transfer

Sketch segmentation is a challenging task that demands plenty of human-
labeled training data [96, 65]. Noris et al. [84] proposed a scribble-based
UI for user-guided segmentation of sketchy drawings, which still requires
substantial human efforts. With SketchDesc, we show that segmentation
labels can be easily transferred across multi-view sketches (Figure 5.12).
Specifically, we use SketchDesc to produce 128-d descriptors for every point
on the sketches. With the correspondences established by the descriptors,
we transfer the segmentation from one labeled sketch to other views. As
shown in Figure 5.12, although there are some distortions in the hand-
drawn sketches, we can still obtain reasonable segmentation results through
transfer.

5.3.2 Multi-view Image-based Correspondence

Image-based descriptors [122, 78, 123] mostly rely on the information of
textures in patches to build the correspondence among multi-view images.
If the input images lack discriminative texture details (Figure 5.13), the
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Fig. 5.13. Correspondence matching among multi-view images of different ob-
jects.

image-based methods (e.g., the state-of-art SOSNet [123]) may fail to ex-
tract robust descriptors with their single-scale input. Here we show that
our sketch-based descriptor SketchDesc can also be extended to this cor-
respondence establishment among multi-view photos (Figure 5.13) under
such challenging situations even with no textures. Here we use edge maps
as a proxy, that is, we first convert a photo to its edge map format and
then apply SketchDesc to obtain local descriptors for matching correspond-
ing points in different views. Figure 5.13 shows that SketchDesc can infer
a reasonable correspondence among multi-view images of different objects
on mere edge maps, indicating the potential of our proposed SketchDesc in
the image domain. The reason why SketchDesc outperforms SOSNet is be-
cause the multi-scale strategy in our method gives more confidence with
the global and local perspectives. This further emphasizes the importance
of th multi-scale idea in both the image and sketch domains. On the other
hand, while we believe SketchDesc can assist existing photo correspondence
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techniques especially when images do not have rich textures, we do not
claim that SketchDesc is a general solution for photo correspondence.

5.4 Discussion

In this chapter, we have introduced a deep learning based method for cor-
respondence learning among multiple sketches of an object in different
views. We have proposed a multi-branch network that encodes contexts
from multi-scale patches with global and local perspectives to produce a
novel descriptor for semantically measuring the distance of pixels in multi-
view sketch images. The multi-branch and shared-weights designs help
the network capture more feature information from all scales of sketch
patches. Our data preparation method provides the ground truth effec-
tively for training our multi-branch network. We believe the generated
data can benefit other applications. Both qualitative and quantitative ex-
periments show that our learned descriptor is more effective than the ex-
isting learning-based descriptors. In the future, it would be interesting to
exploit more neighboring information and learn the per-point features in a
joint manner.

Our method has the following limitations. First, although our method could
generalize well to unseen sketches or even hand-drawn sketches of the
same objects, when the viewpoint differs from the examples in the train-
ing set drastically, our method could fail. This is a common generaliza-
tion problem for any learning-based methods. Increasing the training data
could help yet in the cost of additional training burden. We use a rather
simple method to sample viewpoints for preparing the training data. A
more careful view selection might be made by adopting best-view selection
methods [59]. Additionally, our method is currently designed for multi-
view correspondences of rigid objects. If the object undergoes articulation
or non-rigid deformations (e.g. people dancing), our method may not per-
form well.

100 Chapter 5 Learning Local Sketch Descriptors for Multi-view Corre-
spondence



Conclusion and Future
Work

6

In this dissertation, we have studied the topic of sketch-based shape and
structure analysis and presented algorithms to automatically beautify im-
perfect freehand sketches in the form of part geometry and global struc-
ture, analyze the structural soundness of user-created sketch prototypes
in product design and digital fabrication, and exploit the semantic shape
correspondence from multi-view sketches.

To beautify imperfect sketches of man-made objects, we have introduced
an intuitive and generic pipeline by conducting part-level geometry beauti-
fication and global structure refinement sequentially in Chapter 3.

For structural analysis on sketch prototypes, to simplify the complex and
high-dimension physical forces, we have constrained the high-dimension
and complex forces to the constant force magnitude and direction based on
the estimation of a 2.5D normal map; to simulate the stress undertaken by
2D sketched structures under specified force locations, we have presented a
two-branch generator Sketch2Stress to synthesize feasible structural stress
considering the sketches geometry and force variables simultaneously in
Chapter 4.

Specifically, for the semantic shape correspondence among multi-view sparse
sketches, we have successfully proposed a novel multi-branch network that
encodes contexts from multi-scale patches with global and local perspec-
tives to produce a novel descriptor SketchDesc for semantically measuring
the distance of pixels in multi-view sketch images in Chapter 5.
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6.1 Future Work

There are many exciting and promising directions for future work. The
geometry beautification step in Chapter 3 relies on the classical non-rigid
registration approach [10]. Since registration is still known as an open
problem in the current research community, we believe the combination
with a more advanced registration approach could further boost the perfor-
mance of freehand sketch beautification.

As for Sketch2Stress in Chapter 4, its ideas of simplifying physical forces and
synthesizing the equivalent view-dependent 2D structural stress in advance
in the sketching stage will be inspiring for future work, especially the sub-
sequent series of Sketch2Stress, such as incorporating material properties,
lightweight properties, and aesthetical factors (like the local geometrical or
global structural aesthetics). Since 3D shapes are the most common and
informative representations to connect the virtual world and reality, more
interactions and applications on 3D shapes are flourishing in augmented
reality (AR), virtual reality (VR) settings, etc. We speculate that adapt-
ing these interactions and applications initially operated on 3D shapes to
2D/3D sketches would produce more accessible, straightforward, and effec-
tive sketch-based applications for the public. This would further facilitate
the creation, idea communication, and self-expression in arts. We are opti-
mistic about the future of sketch-based interactions in design, fabrication,
and art, especially in AR and VR scenarios that use sketches to augment or
simulate the real world.

While we put significant efforts into exploring multi-scale context features
of point-centered patches for semantic corresponding points in multi-view
sketches, it remains an open question if the features (SketchDesc) discussed
in Chapter 5 are sufficient to compare the relations/distances of the cor-
responding points and not corresponding ones. In particular, for sparse
sketches in the rasterized format, most regions of a rasterized sketch im-
age are likely to be empty. Instead of designing sketch representations and
learning features from its rasterization format, it could be interesting to rep-
resent a multi-view sketch to its vectorization format and use graph neural
networks (GNNs) to explore the features of not only the valid point data
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(sketch implicit representation in Chapter 3) but also the neighboring rela-
tionships among points [143]. Our SketchDesc work demonstrated the use-
fulness of the correspondence of multi-view sketches in the segmentation
transfer task (Figure 5.12). A more promising direction would be extend-
ing such multi-view correspondence relationships to the co-segmentation
scenarios.

In this dissertation, as discussed above, we mainly focus on the sketch-
based shape and structure analysis of a single object from the aspects of
beautification, interaction with external factors, and multi-view correspon-
dence. We find that the sketch is such an intuitive, simple, representative,
and much clearer medium to curve the local geometry and global struc-
ture of objects. Actually, there is a wider space in exploring the scene-level
sketch that contains multiple objects, such as richer presentation power and
semantic meanings of multi-object sketches, the flexible spatial arrange-
ments of combining multiple objects, and the interactions, motions, and
deformations of multiple objects under external environmental factors (like
forces). In the future, we are quite interested in using multi-object sketches
to represent and simulate the mechanism of mutual effects of shapes in real-
ity. Typically, when designers create a sketch, they may also include some
writing or sketching annotation on the side, such as circles, arrows, crosses,
pig-tales, words, and so on. However, in this thesis, we only consider the ge-
ometry and structure information of the strokes in a sketch, which ignores
the annotations and design intentions provided by users. Nonetheless, this
kind of information is quite important, such as the shadows indicating the
lighting conditions, the hatching line representing the plat plane or curved
surfaces, and scaffolds depicting the spatial information of the designed
objects. In the future, we are also interested in utilizing these annotations
to create more effective and intuitive design tools for the public.
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Implementation Details
and Sketch
Beautification Results

B

T he implementation details and more results of our sketch beautifica-
tion approach are provided in this appendix chapter. Figures B.1 and

B.2 illustrate the parametric network structures of the part beautification
module and structure refinement module in our sketch beautification ap-
proach. Figures B.3, B.4, and B.5 show more beautification results of our
approach.
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Fig. B.1. Network structure of the sketch implicit model.
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Fig. B.3. Visual results of our method. Each triplet contains an input sketch (Left),
the sketch after part beautification (Middle), and the final result after
structure beautification (Right). Please zoom in for better visualization.
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Fig. B.4. Visual results of our method. Each triplet contains an input sketch (Left),
the sketch after part beautification (Middle), and the final result after
structure beautification (Right). Please zoom in for better visualization.
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Fig. B.5. Visual results of our method. Each triplet contains an input sketch (Left),
the sketch after part beautification (Middle), and the final result after
structure beautification (Right). Please zoom in for better visualization.

128 Appendix B

Implementation Details and Sketch Beautification Results



Network Details and
More Evaluations of
Sketch2Stress

C

T he parametric network details and more evaluations of Sketch2Stress
are provided in this appendix chapter. Figure C.1 illustrates the para-

metric network structures of our Sketch2Stress approach. Figures C.2, C.3,
C.4 further present more qualitative results of compared methods across
different categories.

Network Details We adopt a framework of a two-branch generator and
multi-scale discriminators to synthesize the structural stress map directly
from the inputs of sketches and the user’s specified force configurations.
The two-branch generators are designed as an encoder-decoder architec-
ture, as shown in Figure C.1. For multi-scale discriminators, we adopted
the same pixel discriminators as pix2pixHD to distinguish the real/fake
multi-scale normal maps and stress maps.

More Evaluations To demonstrate the performance of all competitors in
the sketch-based structural stress generation task, we display more quali-
tative results in Figure C.2, Figure C.3, and Figure C.4. Note that all the
methods are tested on the unseen data.
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Fig. C.1. The details of our two-branch Sketch2Stress network. The block
of Conv/Upconv/Deconv(input_channel_number, output_channel_number,
kernel_size, stride, padding_width) respectively represents Convolution,
Upsampling + Convolution, and Deconvolution layer. Note that each
Conv/Upconv/Deconv layer is followed by leaky ReLU and batch nor-
malization, which are omitted in the figure for simplicity.
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Sketch & Force pix2pix pix2pixHD Ours GT Sketch & Force pix2pix pix2pixHD Ours GT

Fig. C.2. Qualitative comparison of results generated by different methods of
pix2pix, pix2pixHD, our method, and ground truth. The leftmost col-
umn shows the input sketches and the external forces (plotted as red
dots on sketches).
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Sketch & Force pix2pix pix2pixHD Ours GT Sketch & Force pix2pix pix2pixHD Ours GT

Fig. C.3. Qualitative comparison of results generated by different methods of
pix2pix, pix2pixHD, our method, and ground truth. The leftmost col-
umn shows the input sketches and the external forces (plotted as red
dots on sketches).
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Sketch & Force pix2pix pix2pixHD Ours GT Sketch & Force pix2pix pix2pixHD Ours GT

Fig. C.4. Qualitative comparison of results generated by different methods of
pix2pix, pix2pixHD, our method, and ground truth. The leftmost col-
umn shows the input sketches and the external forces (plotted as red
dots on sketches).
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Correspondence
Results of
SketchDesc Descriptors

D

T his appendix chapter provides more correspondence matching results
on multi-view sketches with our SketchDesc descriptors. Figures D.1

and D.2 display the performance of our SketchDesc on the product sketches
created by professional designers and the freehand sketches drawn by vol-
unteers, respectively. And Figure D.3 illustrates the performance of differ-
ent approaches on the synthesized multi-view sketches rendered from the
existing 3D repositories.
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Fig. D.1. Correspondence of multi-view sketches built by SketchDesc descriptors.
All of the multi-view sketches are from the OpenSketch dataset.
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Fig. D.2. Correspondence of multi-view sketches built by SketchDesc descriptors.
All of these multi-view sketches are created by volunteers.
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Fig. D.3. Sketch correspondence for multi-view sketches (synthesized). The red
lines indicate the failed matching and the green lines show the matching
correspondences among multi-view sketches.
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